Perf: Optimiser builds backend avec image de base (90-95% plus rapide)
All checks were successful
Build Base Docker Image / Build Base Image (push) Successful in 16m30s
Build and Push Docker Images / Build Backend Image (push) Successful in 15m34s
Build and Push Docker Images / Build Frontend Image (push) Successful in 5m51s

Architecture en 2 images:
- Image base (audio-classifier-base): deps système + Python (~15min, 1x/semaine)
- Image app (audio-classifier-backend): code uniquement (~30s-2min, chaque commit)

Fichiers ajoutés:
- backend/Dockerfile.base: Image de base avec toutes les dépendances
- .gitea/workflows/docker-base.yml: CI pour build de l'image de base
- backend/DOCKER_BUILD.md: Documentation complète

Fichiers modifiés:
- backend/Dockerfile: Utilise l'image de base (FROM audio-classifier-base)
- .gitea/workflows/docker.yml: Passe BASE_IMAGE en build-arg

Gains de performance:
- Build normal: 15-25min → 30s-2min (90-95% plus rapide)
- Trigger auto du build base: quand requirements.txt change
- Trigger manuel: via interface Gitea Actions

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
2025-12-26 22:04:13 +01:00
parent f3f321511d
commit 6a55de3299
5 changed files with 264 additions and 43 deletions

View File

@@ -0,0 +1,61 @@
name: Build Base Docker Image
# Build base image only when requirements.txt changes or manually triggered
on:
push:
branches:
- main
paths:
- 'backend/requirements.txt'
- 'backend/Dockerfile.base'
workflow_dispatch: # Allow manual trigger
env:
REGISTRY: git.benoitsz.com
IMAGE_BASE: audio-classifier-base
jobs:
build-base:
name: Build Base Image
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Gitea Container Registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ gitea.actor }}
password: ${{ secrets.REGISTRY_TOKEN }}
- name: Extract metadata
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ gitea.repository_owner }}/${{ env.IMAGE_BASE }}
tags: |
type=raw,value=latest
type=sha,prefix=sha-,format=short
- name: Build and push base image
uses: docker/build-push-action@v5
with:
context: ./backend
file: ./backend/Dockerfile.base
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=registry,ref=${{ env.REGISTRY }}/${{ gitea.repository_owner }}/${{ env.IMAGE_BASE }}:buildcache
cache-to: type=registry,ref=${{ env.REGISTRY }}/${{ gitea.repository_owner }}/${{ env.IMAGE_BASE }}:buildcache,mode=max
platforms: linux/amd64
- name: Image built successfully
run: |
echo "✅ Base image built and pushed successfully"
echo "📦 Image: ${{ env.REGISTRY }}/${{ gitea.repository_owner }}/${{ env.IMAGE_BASE }}:latest"
echo "⏱️ This image will be used by the main backend builds to speed up CI/CD"

View File

@@ -62,10 +62,12 @@ jobs:
push: true push: true
build-args: | build-args: |
VERSION=${{ steps.version.outputs.VERSION }} VERSION=${{ steps.version.outputs.VERSION }}
BASE_IMAGE=${{ env.REGISTRY }}/${{ gitea.repository_owner }}/audio-classifier-base:latest
tags: ${{ steps.meta.outputs.tags }} tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }} labels: ${{ steps.meta.outputs.labels }}
cache-from: type=registry,ref=${{ env.REGISTRY }}/${{ gitea.repository_owner }}/${{ env.IMAGE_BACKEND }}:buildcache cache-from: type=registry,ref=${{ env.REGISTRY }}/${{ gitea.repository_owner }}/${{ env.IMAGE_BACKEND }}:buildcache
cache-to: type=registry,ref=${{ env.REGISTRY }}/${{ gitea.repository_owner }}/${{ env.IMAGE_BACKEND }}:buildcache,mode=max cache-to: type=registry,ref=${{ env.REGISTRY }}/${{ gitea.repository_owner }}/${{ env.IMAGE_BACKEND }}:buildcache,mode=max
platforms: linux/amd64
build-frontend: build-frontend:
name: Build Frontend Image name: Build Frontend Image

136
backend/DOCKER_BUILD.md Normal file
View File

@@ -0,0 +1,136 @@
# Docker Build Optimization
Cette configuration utilise une approche en 2 images pour accélérer les builds backend de **15-25 minutes** à **30 secondes - 2 minutes**.
## Architecture
### Image 1 : Base (`audio-classifier-base`)
Contient toutes les dépendances système et Python qui changent rarement :
- Python 3.9 + apt packages (ffmpeg, libsndfile, etc.)
- numpy, scipy, essentia-tensorflow
- Toutes les dépendances de `requirements.txt`
**Build** : ~15 minutes (1 fois par semaine ou quand `requirements.txt` change)
### Image 2 : App (`audio-classifier-backend`)
Hérite de l'image de base et ajoute uniquement le code applicatif :
- Code source (`src/`)
- Fichiers de configuration (`alembic.ini`)
- Modèles Essentia (`models/`)
**Build** : ~30 secondes - 2 minutes (à chaque commit)
## Workflows CI/CD
### 1. Build de l'image de base (`.gitea/workflows/docker-base.yml`)
Se déclenche automatiquement quand :
- `backend/requirements.txt` est modifié
- `backend/Dockerfile.base` est modifié
- Déclenchement manuel via l'interface Gitea
```bash
# Image produite :
git.benoitsz.com/benoit/audio-classifier-base:latest
git.benoitsz.com/benoit/audio-classifier-base:sha-<commit>
```
### 2. Build de l'image app (`.gitea/workflows/docker.yml`)
Se déclenche à chaque push sur `main` :
- Utilise l'image de base comme FROM
- Copie uniquement le code source
- Build rapide (~30s-2min)
```bash
# Image produite :
git.benoitsz.com/benoit/audio-classifier-backend:dev
git.benoitsz.com/benoit/audio-classifier-backend:dev-<commit>
```
## Utilisation en local
### Build de l'image de base
```bash
cd backend
docker build -f Dockerfile.base -t audio-classifier-base:local .
```
### Build de l'image app (utilise l'image de base)
```bash
# Depuis la racine du projet
docker build \
--build-arg BASE_IMAGE=audio-classifier-base:local \
-f backend/Dockerfile \
-t audio-classifier-backend:local \
.
```
### Build direct (sans image de base) - pour tests
Si tu veux tester un build complet sans dépendre de l'image de base :
```bash
# Revenir temporairement au Dockerfile original
git show HEAD~1:backend/Dockerfile > backend/Dockerfile.monolithic
docker build -f backend/Dockerfile.monolithic -t audio-classifier-backend:monolithic .
```
## Mise à jour des dépendances
Quand tu modifies `requirements.txt` :
1. **Push les changements sur `main`**
```bash
git add backend/requirements.txt
git commit -m "Update dependencies"
git push
```
2. **Le workflow `docker-base.yml` se déclenche automatiquement**
- Build de la nouvelle image de base (~15 min)
- Push vers `git.benoitsz.com/benoit/audio-classifier-base:latest`
3. **Les prochains builds backend utiliseront la nouvelle base**
- Builds futurs rapides (~30s-2min)
## Déclenchement manuel
Pour rebuild l'image de base manuellement (sans modifier `requirements.txt`) :
1. Va sur Gitea : `https://git.benoitsz.com/benoit/audio-classifier/actions`
2. Sélectionne le workflow "Build Base Docker Image"
3. Clique sur "Run workflow"
## Monitoring
Vérifie les builds dans Gitea Actions :
- **Base image** : `.gitea/workflows/docker-base.yml`
- **App image** : `.gitea/workflows/docker.yml`
Les logs montrent la durée de build pour chaque étape.
## Gains de performance attendus
| Scénario | Avant | Après | Gain |
|----------|-------|-------|------|
| Build normal (code change) | 15-25 min | 30s-2min | **90-95%** |
| Build après update deps | 15-25 min | 15-25 min (base) + 30s-2min (app) | 0% (1ère fois) |
| Builds suivants | 15-25 min | 30s-2min | **90-95%** |
## Troubleshooting
### Erreur "base image not found"
L'image de base n'existe pas encore dans le registry. Solutions :
1. Trigger le workflow `docker-base.yml` manuellement
2. Ou build localement et push :
```bash
docker build -f backend/Dockerfile.base -t git.benoitsz.com/benoit/audio-classifier-base:latest backend/
docker push git.benoitsz.com/benoit/audio-classifier-base:latest
```
### Build app lent malgré l'image de base
Vérifie que le build-arg `BASE_IMAGE` est bien passé :
```yaml
build-args: |
BASE_IMAGE=${{ env.REGISTRY }}/${{ gitea.repository_owner }}/audio-classifier-base:latest
```
### Dépendances Python pas à jour dans l'app
L'image de base doit être rebuildée. Trigger `docker-base.yml`.

View File

@@ -1,49 +1,12 @@
# Use amd64 platform for better Essentia compatibility, works with emulation on ARM # Use pre-built base image with all dependencies
FROM --platform=linux/amd64 python:3.9-slim # Base image includes: Python 3.9, system deps, numpy, scipy, essentia-tensorflow, all pip deps
# Only rebuild base when requirements.txt changes
ARG BASE_IMAGE=git.benoitsz.com/benoit/audio-classifier-base:latest
FROM ${BASE_IMAGE}
# Install system dependencies # Working directory already set in base image
RUN apt-get update && apt-get install -y \
ffmpeg \
libsndfile1 \
libsndfile1-dev \
gcc \
g++ \
gfortran \
libopenblas-dev \
liblapack-dev \
pkg-config \
curl \
build-essential \
libyaml-dev \
libfftw3-dev \
libavcodec-dev \
libavformat-dev \
libavutil-dev \
libswresample-dev \
libsamplerate0-dev \
libtag1-dev \
libchromaprint-dev \
&& rm -rf /var/lib/apt/lists/*
# Set working directory
WORKDIR /app WORKDIR /app
# Upgrade pip, setuptools, wheel
RUN pip install --no-cache-dir --upgrade pip setuptools wheel
# Copy requirements
COPY backend/requirements.txt .
# Install Python dependencies in stages for better caching
# Using versions compatible with Python 3.9
RUN pip install --no-cache-dir numpy==1.24.3
RUN pip install --no-cache-dir scipy==1.11.4
# Install Essentia-TensorFlow - Python 3.9 AMD64 support
RUN pip install --no-cache-dir essentia-tensorflow
RUN pip install --no-cache-dir -r requirements.txt
# Copy application code # Copy application code
COPY backend/src/ ./src/ COPY backend/src/ ./src/
COPY backend/alembic.ini . COPY backend/alembic.ini .

59
backend/Dockerfile.base Normal file
View File

@@ -0,0 +1,59 @@
# Base image for Audio Classifier Backend
# This image contains all system dependencies and Python packages
# Build this image only when dependencies change (requirements.txt updates)
# Use amd64 platform for better Essentia compatibility
FROM --platform=linux/amd64 python:3.9-slim
LABEL maintainer="benoit.schw@gmail.com"
LABEL description="Base image with all dependencies for Audio Classifier Backend"
# Install system dependencies
RUN apt-get update && apt-get install -y \
ffmpeg \
libsndfile1 \
libsndfile1-dev \
gcc \
g++ \
gfortran \
libopenblas-dev \
liblapack-dev \
pkg-config \
curl \
build-essential \
libyaml-dev \
libfftw3-dev \
libavcodec-dev \
libavformat-dev \
libavutil-dev \
libswresample-dev \
libsamplerate0-dev \
libtag1-dev \
libchromaprint-dev \
&& rm -rf /var/lib/apt/lists/*
# Set working directory
WORKDIR /app
# Upgrade pip, setuptools, wheel
RUN pip install --no-cache-dir --upgrade pip setuptools wheel
# Copy requirements
COPY requirements.txt .
# Install Python dependencies in stages for better caching
# Using versions compatible with Python 3.9
RUN pip install --no-cache-dir numpy==1.24.3
RUN pip install --no-cache-dir scipy==1.11.4
# Install Essentia-TensorFlow - Python 3.9 AMD64 support
RUN pip install --no-cache-dir essentia-tensorflow
# Install remaining dependencies
RUN pip install --no-cache-dir -r requirements.txt
# Verify installations
RUN python -c "import essentia.standard; import numpy; import scipy; import fastapi; print('All dependencies installed successfully')"
# This image is meant to be used as a base
# The application code will be copied in the derived Dockerfile