Files
Audio-Classifier/backend/Dockerfile
Benoit 6a55de3299
All checks were successful
Build Base Docker Image / Build Base Image (push) Successful in 16m30s
Build and Push Docker Images / Build Backend Image (push) Successful in 15m34s
Build and Push Docker Images / Build Frontend Image (push) Successful in 5m51s
Perf: Optimiser builds backend avec image de base (90-95% plus rapide)
Architecture en 2 images:
- Image base (audio-classifier-base): deps système + Python (~15min, 1x/semaine)
- Image app (audio-classifier-backend): code uniquement (~30s-2min, chaque commit)

Fichiers ajoutés:
- backend/Dockerfile.base: Image de base avec toutes les dépendances
- .gitea/workflows/docker-base.yml: CI pour build de l'image de base
- backend/DOCKER_BUILD.md: Documentation complète

Fichiers modifiés:
- backend/Dockerfile: Utilise l'image de base (FROM audio-classifier-base)
- .gitea/workflows/docker.yml: Passe BASE_IMAGE en build-arg

Gains de performance:
- Build normal: 15-25min → 30s-2min (90-95% plus rapide)
- Trigger auto du build base: quand requirements.txt change
- Trigger manuel: via interface Gitea Actions

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-26 22:04:13 +01:00

24 lines
670 B
Docker

# Use pre-built base image with all dependencies
# Base image includes: Python 3.9, system deps, numpy, scipy, essentia-tensorflow, all pip deps
# Only rebuild base when requirements.txt changes
ARG BASE_IMAGE=git.benoitsz.com/benoit/audio-classifier-base:latest
FROM ${BASE_IMAGE}
# Working directory already set in base image
WORKDIR /app
# Copy application code
COPY backend/src/ ./src/
COPY backend/alembic.ini .
# Copy Essentia models into image (28 MB total)
COPY backend/models/ ./models/
RUN ls -lh /app/models
# Expose port
EXPOSE 8000
# Run migrations and start server
CMD alembic upgrade head && \
uvicorn src.api.main:app --host 0.0.0.0 --port 8000