All checks were successful
Build and Push Docker Images / Build Frontend Image (push) Successful in 57s
Problème: Le scanner scannait TOUS les dossiers, y compris les dossiers générés (transcoded/ et waveforms/), créant: 1. Boucle infinie: scan original → crée transcoded → re-scan transcoded 2. Segfaults: tentative de transcoder des fichiers déjà transcodés 3. Doublons en base de données Solution: - library.py: Exclut transcoded, waveforms, .transcoded, .waveforms - scanner.py: Même exclusion dans le CLI Technique: Modifie dirs[:] dans os.walk() pour skip ces dossiers. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
224 lines
6.9 KiB
Python
224 lines
6.9 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Audio library scanner CLI tool.
|
|
Scans a directory for audio files and adds them to the database.
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
import argparse
|
|
from pathlib import Path
|
|
from typing import List
|
|
|
|
# Add parent directory to path for imports
|
|
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
|
|
|
from src.core.audio_processor import extract_all_features
|
|
from src.core.essentia_classifier import EssentiaClassifier
|
|
from src.core.transcoder import AudioTranscoder
|
|
from src.core.waveform_generator import save_waveform_to_file
|
|
from src.models.database import SessionLocal
|
|
from src.models.schema import AudioTrack
|
|
from src.utils.logging import get_logger
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
# Supported audio formats
|
|
AUDIO_EXTENSIONS = {'.mp3', '.wav', '.flac', '.m4a', '.aac', '.ogg', '.wma'}
|
|
|
|
|
|
def find_audio_files(directory: str) -> List[Path]:
|
|
"""Find all audio files in directory and subdirectories.
|
|
|
|
Args:
|
|
directory: Root directory to scan
|
|
|
|
Returns:
|
|
List of paths to audio files
|
|
"""
|
|
audio_files = []
|
|
directory_path = Path(directory)
|
|
|
|
if not directory_path.exists():
|
|
logger.error(f"Directory does not exist: {directory}")
|
|
return []
|
|
|
|
logger.info(f"Scanning directory: {directory}")
|
|
|
|
for root, dirs, files in os.walk(directory_path):
|
|
# Skip transcoded and waveforms directories
|
|
dirs[:] = [d for d in dirs if d not in ['transcoded', 'waveforms', '.transcoded', '.waveforms']]
|
|
|
|
for file in files:
|
|
file_path = Path(root) / file
|
|
if file_path.suffix.lower() in AUDIO_EXTENSIONS:
|
|
audio_files.append(file_path)
|
|
|
|
logger.info(f"Found {len(audio_files)} audio files")
|
|
return audio_files
|
|
|
|
|
|
def analyze_and_store(file_path: Path, classifier: EssentiaClassifier, transcoder: AudioTranscoder, db) -> bool:
|
|
"""Analyze an audio file and store it in the database.
|
|
|
|
Args:
|
|
file_path: Path to audio file
|
|
classifier: Essentia classifier instance
|
|
transcoder: Audio transcoder instance
|
|
db: Database session
|
|
|
|
Returns:
|
|
True if successful, False otherwise
|
|
"""
|
|
try:
|
|
logger.info(f"Processing: {file_path}")
|
|
|
|
# Check if already in database
|
|
existing = db.query(AudioTrack).filter(AudioTrack.filepath == str(file_path)).first()
|
|
if existing:
|
|
logger.info(f"Already in database, skipping: {file_path}")
|
|
return True
|
|
|
|
# Extract basic features with librosa
|
|
features = extract_all_features(str(file_path))
|
|
|
|
# Get genre classification
|
|
genre_result = classifier.predict_genre(str(file_path))
|
|
|
|
# Get mood classification
|
|
mood_result = classifier.predict_mood(str(file_path))
|
|
|
|
# Get instruments
|
|
instruments = classifier.predict_instruments(str(file_path))
|
|
|
|
# Transcode to MP3 128kbps for streaming
|
|
logger.info(" → Transcoding to MP3 128kbps for streaming...")
|
|
stream_path = transcoder.transcode_to_mp3(
|
|
str(file_path),
|
|
bitrate="128k",
|
|
overwrite=False
|
|
)
|
|
|
|
# Pre-compute waveform
|
|
logger.info(" → Generating waveform...")
|
|
waveform_dir = file_path.parent / "waveforms"
|
|
waveform_dir.mkdir(parents=True, exist_ok=True)
|
|
waveform_path = waveform_dir / f"{file_path.stem}.waveform.json"
|
|
|
|
waveform_success = save_waveform_to_file(
|
|
str(file_path),
|
|
str(waveform_path),
|
|
num_peaks=800
|
|
)
|
|
|
|
# Create track record
|
|
track = AudioTrack(
|
|
filepath=str(file_path),
|
|
stream_filepath=stream_path,
|
|
waveform_filepath=str(waveform_path) if waveform_success else None,
|
|
filename=file_path.name,
|
|
duration_seconds=features['duration_seconds'],
|
|
tempo_bpm=features['tempo_bpm'],
|
|
key=features['key'],
|
|
time_signature=features['time_signature'],
|
|
energy=features['energy'],
|
|
danceability=features['danceability'],
|
|
valence=features['valence'],
|
|
loudness_lufs=features['loudness_lufs'],
|
|
spectral_centroid=features['spectral_centroid'],
|
|
zero_crossing_rate=features['zero_crossing_rate'],
|
|
genre_primary=genre_result['primary'],
|
|
genre_secondary=genre_result['secondary'],
|
|
genre_confidence=genre_result['confidence'],
|
|
mood_primary=mood_result['primary'],
|
|
mood_secondary=mood_result['secondary'],
|
|
mood_arousal=mood_result['arousal'],
|
|
mood_valence=mood_result['valence'],
|
|
instruments=[i['name'] for i in instruments[:5]], # Top 5
|
|
)
|
|
|
|
db.add(track)
|
|
db.commit()
|
|
|
|
logger.info(f"✓ Added to database: {file_path.name}")
|
|
logger.info(f" Genre: {genre_result['primary']}, Mood: {mood_result['primary']}, "
|
|
f"Tempo: {features['tempo_bpm']:.1f} BPM")
|
|
logger.info(f" Stream: {stream_path}")
|
|
logger.info(f" Waveform: {'✓' if waveform_success else '✗'}")
|
|
|
|
return True
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to process {file_path}: {e}")
|
|
db.rollback()
|
|
return False
|
|
|
|
|
|
def main():
|
|
"""Main scanner function."""
|
|
parser = argparse.ArgumentParser(
|
|
description='Scan audio library and add tracks to database'
|
|
)
|
|
parser.add_argument(
|
|
'directory',
|
|
help='Directory to scan for audio files'
|
|
)
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='Number of parallel workers (default: 1)'
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Find audio files
|
|
audio_files = find_audio_files(args.directory)
|
|
|
|
if not audio_files:
|
|
logger.warning("No audio files found!")
|
|
return
|
|
|
|
# Initialize classifier
|
|
logger.info("Initializing Essentia classifier...")
|
|
classifier = EssentiaClassifier()
|
|
|
|
# Initialize transcoder
|
|
logger.info("Initializing audio transcoder...")
|
|
transcoder = AudioTranscoder()
|
|
|
|
# Check FFmpeg availability
|
|
if not transcoder.check_ffmpeg_available():
|
|
logger.error("FFmpeg is required for transcoding. Please install FFmpeg and try again.")
|
|
return
|
|
|
|
# Process files
|
|
db = SessionLocal()
|
|
success_count = 0
|
|
error_count = 0
|
|
|
|
try:
|
|
for i, file_path in enumerate(audio_files, 1):
|
|
logger.info(f"[{i}/{len(audio_files)}] Processing...")
|
|
|
|
if analyze_and_store(file_path, classifier, transcoder, db):
|
|
success_count += 1
|
|
else:
|
|
error_count += 1
|
|
|
|
finally:
|
|
db.close()
|
|
|
|
# Summary
|
|
logger.info("")
|
|
logger.info("=" * 60)
|
|
logger.info(f"Scan complete!")
|
|
logger.info(f" Total files: {len(audio_files)}")
|
|
logger.info(f" Successfully processed: {success_count}")
|
|
logger.info(f" Errors: {error_count}")
|
|
logger.info("=" * 60)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|