Backend #1

Merged
benoit merged 3 commits from Backend into main 2025-12-23 10:58:11 +01:00
Owner
No description provided.
benoit added 3 commits 2025-12-23 10:57:59 +01:00
J'ai implémenté une solution complète pour optimiser ton système audio :
1. Backend - Transcodage & Waveforms
Nouveau module de transcodage (transcoder.py):
Transcodage automatique en MP3 128kbps via FFmpeg
Stockage dans dossier transcoded/
Compression ~70-90% selon format source
Waveforms pré-calculées (waveform_generator.py):
Génération lors du scan (800 points)
Stockage JSON dans dossier waveforms/
Chargement instantané
Schema BDD mis à jour (schema.py):
filepath : fichier original (download)
stream_filepath : MP3 128kbps (streaming)
waveform_filepath : JSON pré-calculé
Scanner amélioré (scanner.py):
Transcode automatiquement chaque fichier
Pré-calcule la waveform
Stocke les 3 chemins en BDD
2. API - Endpoints
Endpoint /api/library/scan (library.py):
POST pour lancer un scan
Tâche en arrière-plan
Statut consultable via GET /api/library/scan/status
Streaming optimisé (audio.py):
Utilise stream_filepath (MP3 128kbps) en priorité
Fallback sur fichier original si absent
Waveform chargée depuis JSON pré-calculé
3. Frontend - Interface
Bouton Rescan (page.tsx):
Dans le header à droite
Icône qui tourne pendant le scan
Affichage progression en temps réel
Reload automatique après scan
4. Base de données
Migration appliquée (20251223_003_add_stream_waveform_paths.py):

ALTER TABLE audio_tracks ADD COLUMN stream_filepath VARCHAR;
ALTER TABLE audio_tracks ADD COLUMN waveform_filepath VARCHAR;
CREATE INDEX idx_stream_filepath ON audio_tracks (stream_filepath);
🚀 Utilisation
Via l'interface web
Clique sur le bouton "Rescan" dans le header
Le scan démarre automatiquement
Tu vois la progression en temps réel
La page se recharge automatiquement à la fin
Via CLI (dans le container)

docker-compose exec backend python -m src.cli.scanner /music
📊 Avantages
 Streaming ultra-rapide : MP3 128kbps = ~70-90% plus léger
 Waveform instantanée : Pré-calculée, pas de latence
 Download qualité : Fichier original préservé
 Rescan facile : Bouton dans l'UI
 Prêt pour serveur distant : Optimisé pour la bande passante
🎯 Ce qui a été fait
1. Modèles intégrés dans l'image Docker 
Les 5 modèles Essentia (28 MB total) sont maintenant copiés directement dans l'image
Pas besoin de volume mount /backend/models:/app/models
Dockerfile modifié pour inclure COPY models/ ./models/
2. Volume models supprimé du docker-compose 
Le docker-compose.yml ne monte plus le dossier models/
Seul le dossier audio est monté (pour accès aux fichiers)
3. Dockerignore configuré 
Les modèles ne sont plus ignorés
Copiés dans l'image lors du build
4. Documentation complète 
DEPLOYMENT.md - Guide de déploiement complet
README.md - Mise à jour avec instructions autonomes
Script check-autonomous.sh - Vérification automatique
📦 Contenu de l'image
Modèles Essentia inclus (28 MB) :

/app/models/
├── discogs-effnet-bs64-1.pb (18 MB)
├── genre_discogs400-discogs-effnet-1.pb (2 MB)
├── genre_discogs400-discogs-effnet-1.json (15 KB)
├── mtg_jamendo_instrument-discogs-effnet-1.pb (2.6 MB)
└── mtg_jamendo_moodtheme-discogs-effnet-1.pb (2.7 MB)
🚀 Déploiement Autonome
Sur N'IMPORTE QUEL serveur avec Docker :

# 1. Cloner
git clone <repo>
cd Audio-Classifier

# 2. Configurer (optionnel)
echo "AUDIO_LIBRARY_PATH=/path/to/music" > .env

# 3. Démarrer
docker-compose up -d
Aucune action manuelle requise :
 Pas de téléchargement de modèles
 Pas de configuration complexe
 Pas de dépendances externes
 Tout est dans l'image Docker
 Avantages
Portabilité : L'image contient tout ce qu'il faut
Rapidité : Pas d'attente pour télécharger 28 MB au démarrage
Fiabilité : Pas de risque de modèles manquants ou corrompus
Offline : Fonctionne sans connexion internet (après pull de l'image)
Reproductibilité : Même version des modèles partout
🔍 Vérification

# Vérifier que tout est autonome
bash check-autonomous.sh

# Vérifier les modèles dans le container
docker-compose exec backend ls -lh /app/models
# → Doit afficher 28 MB de modèles
📊 Taille de l'image
Image backend : ~1.2 GB (avec modèles)
Image frontend : ~500 MB
Total : ~1.7 GB
C'est normal pour une image Python + TensorFlow + Essentia + modèles. Le système est maintenant 100% autonome et prêt pour un déploiement sans intervention !
benoit merged commit 54086236c6 into main 2025-12-23 10:58:11 +01:00
Sign in to join this conversation.
No Reviewers
No Label
1 Participants
Notifications
Due Date
No due date set.
Dependencies

No dependencies set.

Reference: benoit/Audio-Classifier#1