Compare commits

...

2 Commits

Author SHA1 Message Date
90c841310c Fix bequcoup de choses : Genre OK, affichage des infos sur le front 2025-12-22 13:26:55 +01:00
dec30019e2 WIP essentia 2025-12-22 12:59:20 +01:00
10 changed files with 166 additions and 36 deletions

View File

@@ -0,0 +1,15 @@
{
"permissions": {
"allow": [
"Bash(node --version:*)",
"Bash(docker --version:*)",
"Bash(docker-compose:*)",
"Bash(test:*)",
"Bash(cp:*)",
"Bash(bash scripts/download-essentia-models.sh:*)",
"Bash(curl:*)",
"Bash(docker logs:*)",
"Bash(docker exec:*)"
]
}
}

View File

@@ -95,6 +95,10 @@ curl -X POST http://localhost:8001/api/analyze/folder \
-H "Content-Type: application/json" \
-d '{"path": "/audio/music", "recursive": true}'
```
#### Sous Windows 10
````bash
curl.exe -X POST http://localhost:8001/api/analyze/folder -H "Content-Type: application/json" -d '{\"path\": \"/audio/\", \"recursive\": true}'
````
### Rechercher des pistes

View File

@@ -39,8 +39,8 @@ COPY requirements.txt .
RUN pip install --no-cache-dir numpy==1.24.3
RUN pip install --no-cache-dir scipy==1.11.4
# Install Essentia - Python 3.9 with ARM64 support
RUN pip install --no-cache-dir essentia
# Install Essentia-TensorFlow - Python 3.9 AMD64 support
RUN pip install --no-cache-dir essentia-tensorflow
RUN pip install --no-cache-dir -r requirements.txt

View File

@@ -14,7 +14,8 @@ try:
from essentia.standard import (
MonoLoader,
TensorflowPredictEffnetDiscogs,
TensorflowPredict2D
TensorflowPredict2D,
TensorflowPredictMusiCNN
)
ESSENTIA_AVAILABLE = True
except ImportError:
@@ -55,7 +56,17 @@ class EssentiaClassifier:
logger.warning(f"Models path {self.models_path} does not exist")
return
# Model file names
# Check for embedding model first
embedding_file = "discogs-effnet-bs64-1.pb"
embedding_path = self.models_path / embedding_file
if embedding_path.exists():
logger.info(f"Loading embedding model from {embedding_path}")
self.models["embedding"] = str(embedding_path)
else:
logger.warning(f"Embedding model not found: {embedding_path}")
return # Cannot proceed without embeddings
# Model file names for classification heads
model_files = {
"genre": "mtg_jamendo_genre-discogs-effnet-1.pb",
"mood": "mtg_jamendo_moodtheme-discogs-effnet-1.pb",
@@ -135,23 +146,47 @@ class EssentiaClassifier:
return self._fallback_genre()
try:
# Load audio
# Step 1: Extract embeddings using discogs-effnet
audio = MonoLoader(filename=audio_path, sampleRate=16000, resampleQuality=4)()
# Predict
model = TensorflowPredictEffnetDiscogs(
graphFilename=self.models["genre"],
embedding_model = TensorflowPredictEffnetDiscogs(
graphFilename=self.models["embedding"],
output="PartitionedCall:1"
)
predictions = model(audio)
embeddings = embedding_model(audio)
# Average embeddings over time
embeddings_mean = np.mean(embeddings, axis=0)
# Step 2: Feed embeddings to classification head
classifier = TensorflowPredict2D(
graphFilename=self.models["genre"],
input="model/Placeholder",
output="model/Sigmoid"
)
predictions = classifier(embeddings_mean.reshape(1, -1))
predictions = predictions[0] # Remove batch dimension
# Get top predictions
top_indices = np.argsort(predictions)[::-1][:5]
labels = self.class_labels.get("genre", [])
logger.info(f"Genre predictions shape: {predictions.shape}, num_labels: {len(labels)}")
primary = labels[top_indices[0]] if labels else "unknown"
secondary = [labels[i] for i in top_indices[1:4]] if labels else []
confidence = float(predictions[top_indices[0]])
# Ensure we don't go out of bounds
if len(predictions) == 0:
logger.warning("No predictions returned from genre model")
return self._fallback_genre()
top_indices = np.argsort(predictions)[::-1][:5]
# Only use indices that are within the labels range
valid_top_indices = [i for i in top_indices if i < len(labels)]
if not valid_top_indices:
logger.warning(f"No valid indices found. Predictions: {len(predictions)}, Labels: {len(labels)}")
return self._fallback_genre()
primary = labels[valid_top_indices[0]]
secondary = [labels[i] for i in valid_top_indices[1:4]]
confidence = float(predictions[valid_top_indices[0]])
return {
"primary": primary,
@@ -172,26 +207,43 @@ class EssentiaClassifier:
Returns:
Dictionary with mood predictions
"""
if not ESSENTIA_AVAILABLE or "mood" not in self.models:
if not ESSENTIA_AVAILABLE or "mood" not in self.models or "embedding" not in self.models:
return self._fallback_mood()
try:
# Load audio
# Step 1: Extract embeddings using discogs-effnet
audio = MonoLoader(filename=audio_path, sampleRate=16000, resampleQuality=4)()
# Predict
model = TensorflowPredictEffnetDiscogs(
graphFilename=self.models["mood"],
embedding_model = TensorflowPredictEffnetDiscogs(
graphFilename=self.models["embedding"],
output="PartitionedCall:1"
)
predictions = model(audio)
embeddings = embedding_model(audio)
embeddings_mean = np.mean(embeddings, axis=0)
# Step 2: Feed embeddings to classification head
classifier = TensorflowPredict2D(
graphFilename=self.models["mood"],
input="model/Placeholder",
output="model/Sigmoid"
)
predictions = classifier(embeddings_mean.reshape(1, -1))
predictions = predictions[0]
# Get top predictions
top_indices = np.argsort(predictions)[::-1][:5]
labels = self.class_labels.get("mood", [])
primary = labels[top_indices[0]] if labels else "unknown"
secondary = [labels[i] for i in top_indices[1:3]] if labels else []
if len(predictions) == 0:
return self._fallback_mood()
top_indices = np.argsort(predictions)[::-1][:5]
valid_top_indices = [i for i in top_indices if i < len(labels)]
if not valid_top_indices:
return self._fallback_mood()
primary = labels[valid_top_indices[0]] if valid_top_indices else "unknown"
secondary = [labels[i] for i in valid_top_indices[1:3]] if len(valid_top_indices) > 1 else []
# Estimate arousal and valence from mood labels (simplified)
arousal, valence = self._estimate_arousal_valence(primary)
@@ -216,19 +268,28 @@ class EssentiaClassifier:
Returns:
List of instruments with confidence scores
"""
if not ESSENTIA_AVAILABLE or "instrument" not in self.models:
if not ESSENTIA_AVAILABLE or "instrument" not in self.models or "embedding" not in self.models:
return self._fallback_instruments()
try:
# Load audio
# Step 1: Extract embeddings using discogs-effnet
audio = MonoLoader(filename=audio_path, sampleRate=16000, resampleQuality=4)()
# Predict
model = TensorflowPredictEffnetDiscogs(
graphFilename=self.models["instrument"],
embedding_model = TensorflowPredictEffnetDiscogs(
graphFilename=self.models["embedding"],
output="PartitionedCall:1"
)
predictions = model(audio)
embeddings = embedding_model(audio)
embeddings_mean = np.mean(embeddings, axis=0)
# Step 2: Feed embeddings to classification head
classifier = TensorflowPredict2D(
graphFilename=self.models["instrument"],
input="model/Placeholder",
output="model/Sigmoid"
)
predictions = classifier(embeddings_mean.reshape(1, -1))
predictions = predictions[0]
# Get instruments above threshold
threshold = 0.1

View File

@@ -40,10 +40,15 @@ services:
restart: unless-stopped
frontend:
build: ./frontend
build:
context: ./frontend
args:
NEXT_PUBLIC_API_URL: http://localhost:8001
container_name: audio_classifier_ui
environment:
NEXT_PUBLIC_API_URL: http://backend:8000
# Use localhost:8001 because the browser (client-side) needs to access the API
# The backend is mapped to port 8001 on the host machine
NEXT_PUBLIC_API_URL: http://localhost:8001
ports:
- "3000:3000"
depends_on:

View File

@@ -1,7 +1,6 @@
node_modules
.next
.git
.env.local
npm-debug.log*
yarn-debug.log*
yarn-error.log*

1
frontend/.env.local Normal file
View File

@@ -0,0 +1 @@
NEXT_PUBLIC_API_URL=http://localhost:8001

View File

@@ -12,6 +12,10 @@ RUN npm ci
# Copy application code
COPY . .
# Build argument for API URL
ARG NEXT_PUBLIC_API_URL=http://localhost:8001
ENV NEXT_PUBLIC_API_URL=${NEXT_PUBLIC_API_URL}
# Build the application
RUN npm run build

View File

@@ -76,6 +76,8 @@ export default function Home() {
<div className="flex justify-between items-start">
<div className="flex-1">
<h3 className="font-medium text-gray-900">{track.filename}</h3>
{/* Primary metadata */}
<div className="mt-1 flex flex-wrap gap-2">
<span className="inline-flex items-center px-2 py-1 rounded text-xs bg-blue-100 text-blue-800">
{track.classification.genre.primary}
@@ -86,10 +88,40 @@ export default function Home() {
<span className="text-xs text-gray-500">
{Math.round(track.features.tempo_bpm)} BPM
</span>
<span className="text-xs text-gray-500">
{track.features.key}
</span>
<span className="text-xs text-gray-500">
{Math.floor(track.duration_seconds / 60)}:{String(Math.floor(track.duration_seconds % 60)).padStart(2, '0')}
</span>
</div>
{/* Secondary moods */}
{track.classification.mood.secondary && track.classification.mood.secondary.length > 0 && (
<div className="mt-2 flex flex-wrap gap-1">
<span className="text-xs text-gray-400">Also:</span>
{track.classification.mood.secondary.map((mood, i) => (
<span key={i} className="inline-flex items-center px-2 py-0.5 rounded text-xs bg-purple-50 text-purple-600">
{mood}
</span>
))}
</div>
)}
{/* Instruments */}
{track.classification.instruments && track.classification.instruments.length > 0 && (
<div className="mt-2 flex flex-wrap gap-1">
<span className="text-xs text-gray-400">Instruments:</span>
{track.classification.instruments.slice(0, 6).map((instrument, i) => (
<span key={i} className="inline-flex items-center px-2 py-0.5 rounded text-xs bg-green-50 text-green-700">
{instrument}
</span>
))}
{track.classification.instruments.length > 6 && (
<span className="text-xs text-gray-400">+{track.classification.instruments.length - 6} more</span>
)}
</div>
)}
</div>
<div className="ml-4 flex gap-2">
<a

View File

@@ -6,7 +6,8 @@
set -e # Exit on error
MODELS_DIR="backend/models"
BASE_URL="https://essentia.upf.edu/models/classification-heads"
CLASS_HEADS_URL="https://essentia.upf.edu/models/classification-heads"
EMBEDDINGS_URL="https://essentia.upf.edu/models/feature-extractors/discogs-effnet"
echo "📦 Downloading Essentia models..."
echo "Models directory: $MODELS_DIR"
@@ -37,15 +38,23 @@ download_model() {
fi
}
# Download each model
# Download embedding model first (required for all classification heads)
echo ""
echo "Downloading embedding model..."
download_model "discogs-effnet-bs64-1.pb" \
"$EMBEDDINGS_URL/discogs-effnet-bs64-1.pb"
# Download classification heads
echo ""
echo "Downloading classification heads..."
download_model "mtg_jamendo_genre-discogs-effnet-1.pb" \
"$BASE_URL/mtg_jamendo_genre/mtg_jamendo_genre-discogs-effnet-1.pb"
"$CLASS_HEADS_URL/mtg_jamendo_genre/mtg_jamendo_genre-discogs-effnet-1.pb"
download_model "mtg_jamendo_moodtheme-discogs-effnet-1.pb" \
"$BASE_URL/mtg_jamendo_moodtheme/mtg_jamendo_moodtheme-discogs-effnet-1.pb"
"$CLASS_HEADS_URL/mtg_jamendo_moodtheme/mtg_jamendo_moodtheme-discogs-effnet-1.pb"
download_model "mtg_jamendo_instrument-discogs-effnet-1.pb" \
"$BASE_URL/mtg_jamendo_instrument/mtg_jamendo_instrument-discogs-effnet-1.pb"
"$CLASS_HEADS_URL/mtg_jamendo_instrument/mtg_jamendo_instrument-discogs-effnet-1.pb"
echo ""
echo "✅ All models downloaded successfully!"