Compare commits
3 Commits
7ce2b70a8c
...
1bb13c79d0
| Author | SHA1 | Date | |
|---|---|---|---|
| 1bb13c79d0 | |||
| c91cf634b7 | |||
| 76d014bda2 |
322
DEPLOYMENT.md
Normal file
322
DEPLOYMENT.md
Normal file
@@ -0,0 +1,322 @@
|
||||
# Déploiement Audio Classifier
|
||||
|
||||
## 🚀 Déploiement Autonome
|
||||
|
||||
Le système est **100% autonome** - aucune action manuelle requise ! Les modèles Essentia sont intégrés dans l'image Docker.
|
||||
|
||||
### Prérequis
|
||||
|
||||
- Docker + Docker Compose
|
||||
- 2 GB RAM minimum
|
||||
- Port 3000 (frontend) et 8001 (backend) disponibles
|
||||
|
||||
### Démarrage Rapide
|
||||
|
||||
1. **Cloner le projet** :
|
||||
```bash
|
||||
git clone <votre-repo>
|
||||
cd Audio-Classifier
|
||||
```
|
||||
|
||||
2. **Configurer le chemin audio** (optionnel) :
|
||||
```bash
|
||||
# Créer un fichier .env
|
||||
echo "AUDIO_LIBRARY_PATH=/chemin/vers/votre/musique" > .env
|
||||
```
|
||||
|
||||
3. **Démarrer** :
|
||||
```bash
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
4. **Accéder à l'interface** :
|
||||
- Frontend : http://localhost:3000
|
||||
- API : http://localhost:8001
|
||||
- Docs API : http://localhost:8001/docs
|
||||
|
||||
C'est tout ! 🎉
|
||||
|
||||
### Premier Scan
|
||||
|
||||
1. Ouvrir http://localhost:3000
|
||||
2. Cliquer sur le bouton **"Rescan"** dans le header
|
||||
3. Attendre que le scan se termine (progression affichée)
|
||||
4. Profiter !
|
||||
|
||||
## 📦 Ce qui est inclus dans l'image
|
||||
|
||||
✅ **Modèles Essentia** (28 MB) :
|
||||
- `discogs-effnet-bs64-1.pb` (18 MB) - Embedding model
|
||||
- `genre_discogs400-discogs-effnet-1.pb` (2 MB) - Genre classifier
|
||||
- `mtg_jamendo_moodtheme-discogs-effnet-1.pb` (2.7 MB) - Mood classifier
|
||||
- `mtg_jamendo_instrument-discogs-effnet-1.pb` (2.6 MB) - Instrument classifier
|
||||
|
||||
✅ **Dépendances Python** :
|
||||
- FastAPI, Uvicorn
|
||||
- Essentia-TensorFlow
|
||||
- Librosa, SQLAlchemy
|
||||
- FFmpeg (pour transcodage)
|
||||
|
||||
✅ **Base de données** :
|
||||
- PostgreSQL avec pgvector
|
||||
- Migrations Alembic auto-appliquées
|
||||
|
||||
## ⚙️ Configuration
|
||||
|
||||
### Variables d'environnement (.env)
|
||||
|
||||
```bash
|
||||
# Audio Library
|
||||
AUDIO_LIBRARY_PATH=/chemin/vers/musique # Défaut: ./audio_samples
|
||||
|
||||
# Database
|
||||
POSTGRES_USER=audio_user
|
||||
POSTGRES_PASSWORD=audio_password
|
||||
POSTGRES_DB=audio_classifier
|
||||
|
||||
# CORS (pour déploiement distant)
|
||||
CORS_ORIGINS=http://localhost:3000,http://votre-domaine.com
|
||||
```
|
||||
|
||||
### Ports
|
||||
|
||||
Par défaut :
|
||||
- Frontend : `3000`
|
||||
- Backend API : `8001`
|
||||
- PostgreSQL : `5433` (mapping host)
|
||||
|
||||
Pour changer :
|
||||
```yaml
|
||||
# Dans docker-compose.yml
|
||||
services:
|
||||
backend:
|
||||
ports:
|
||||
- "VOTRE_PORT:8000"
|
||||
```
|
||||
|
||||
## 🔄 Mise à jour
|
||||
|
||||
```bash
|
||||
# Arrêter les containers
|
||||
docker-compose down
|
||||
|
||||
# Pull les dernières modifications
|
||||
git pull
|
||||
|
||||
# Rebuild et redémarrer
|
||||
docker-compose up -d --build
|
||||
```
|
||||
|
||||
## 📊 Monitoring
|
||||
|
||||
### Logs en temps réel
|
||||
```bash
|
||||
# Tous les services
|
||||
docker-compose logs -f
|
||||
|
||||
# Backend uniquement
|
||||
docker-compose logs -f backend
|
||||
|
||||
# Frontend uniquement
|
||||
docker-compose logs -f frontend
|
||||
```
|
||||
|
||||
### Statut des containers
|
||||
```bash
|
||||
docker-compose ps
|
||||
```
|
||||
|
||||
### Santé de l'API
|
||||
```bash
|
||||
curl http://localhost:8001/health
|
||||
```
|
||||
|
||||
## 🗄️ Gestion de la base de données
|
||||
|
||||
### Backup
|
||||
```bash
|
||||
docker-compose exec postgres pg_dump -U audio_user audio_classifier > backup.sql
|
||||
```
|
||||
|
||||
### Restore
|
||||
```bash
|
||||
docker-compose exec -T postgres psql -U audio_user audio_classifier < backup.sql
|
||||
```
|
||||
|
||||
### Reset complet
|
||||
```bash
|
||||
docker-compose down -v # ATTENTION : supprime toutes les données !
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
## 🎵 Scan de bibliothèque
|
||||
|
||||
### Via l'interface web
|
||||
Cliquez sur **"Rescan"** dans le header.
|
||||
|
||||
### Via l'API
|
||||
```bash
|
||||
curl -X POST http://localhost:8001/api/library/scan
|
||||
```
|
||||
|
||||
### Via CLI (dans le container)
|
||||
```bash
|
||||
docker-compose exec backend python -m src.cli.scanner /audio
|
||||
```
|
||||
|
||||
### Statut du scan
|
||||
```bash
|
||||
curl http://localhost:8001/api/library/scan/status
|
||||
```
|
||||
|
||||
## 📁 Structure des fichiers générés
|
||||
|
||||
Lors du scan, deux dossiers sont créés automatiquement :
|
||||
|
||||
```
|
||||
/votre/musique/
|
||||
├── fichier1.mp3
|
||||
├── fichier2.flac
|
||||
├── transcoded/ # MP3 128kbps pour streaming
|
||||
│ ├── fichier1.mp3
|
||||
│ └── fichier2.mp3
|
||||
└── waveforms/ # JSON pré-calculés
|
||||
├── fichier1.waveform.json
|
||||
└── fichier2.waveform.json
|
||||
```
|
||||
|
||||
## 🚢 Déploiement Production
|
||||
|
||||
### Sur un serveur distant
|
||||
|
||||
1. **Installer Docker** sur le serveur
|
||||
|
||||
2. **Cloner et configurer** :
|
||||
```bash
|
||||
git clone <votre-repo>
|
||||
cd Audio-Classifier
|
||||
```
|
||||
|
||||
3. **Configurer .env** :
|
||||
```bash
|
||||
# Chemin vers musique
|
||||
AUDIO_LIBRARY_PATH=/mnt/musique
|
||||
|
||||
# Domaine public
|
||||
CORS_ORIGINS=http://votre-domaine.com,https://votre-domaine.com
|
||||
|
||||
# Credentials BDD (sécurisés !)
|
||||
POSTGRES_PASSWORD=motdepasse_fort_aleatoire
|
||||
```
|
||||
|
||||
4. **Démarrer** :
|
||||
```bash
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
5. **Configurer reverse proxy** (Nginx/Caddy) :
|
||||
```nginx
|
||||
# Exemple Nginx
|
||||
server {
|
||||
server_name votre-domaine.com;
|
||||
|
||||
location / {
|
||||
proxy_pass http://localhost:3000;
|
||||
}
|
||||
|
||||
location /api/ {
|
||||
proxy_pass http://localhost:8001/api/;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Avec Docker Hub
|
||||
|
||||
1. **Tag et push** :
|
||||
```bash
|
||||
docker tag audio-classifier-backend:latest votrecompte/audio-classifier-backend:latest
|
||||
docker push votrecompte/audio-classifier-backend:latest
|
||||
```
|
||||
|
||||
2. **Sur le serveur** :
|
||||
```yaml
|
||||
# docker-compose.yml
|
||||
services:
|
||||
backend:
|
||||
image: votrecompte/audio-classifier-backend:latest
|
||||
# ... reste de la config
|
||||
```
|
||||
|
||||
## 🔒 Sécurité
|
||||
|
||||
### Recommandations
|
||||
|
||||
✅ Changer les mots de passe par défaut
|
||||
✅ Utiliser HTTPS en production (Let's Encrypt)
|
||||
✅ Restreindre CORS_ORIGINS aux domaines autorisés
|
||||
✅ Ne pas exposer PostgreSQL publiquement
|
||||
✅ Backups réguliers de la BDD
|
||||
|
||||
### Firewall
|
||||
```bash
|
||||
# Autoriser uniquement ports nécessaires
|
||||
ufw allow 80/tcp # HTTP
|
||||
ufw allow 443/tcp # HTTPS
|
||||
ufw allow 22/tcp # SSH
|
||||
ufw enable
|
||||
```
|
||||
|
||||
## ❓ Troubleshooting
|
||||
|
||||
### Les modèles ne se chargent pas
|
||||
```bash
|
||||
# Vérifier que les modèles sont dans l'image
|
||||
docker-compose exec backend ls -lh /app/models
|
||||
|
||||
# Devrait afficher 28 MB de modèles
|
||||
```
|
||||
|
||||
### Le scan ne démarre pas
|
||||
```bash
|
||||
# Vérifier les permissions du dossier audio
|
||||
docker-compose exec backend ls -la /audio
|
||||
|
||||
# Devrait être accessible en écriture
|
||||
```
|
||||
|
||||
### Erreur de mémoire
|
||||
```bash
|
||||
# Augmenter la mémoire Docker
|
||||
# Docker Desktop > Settings > Resources > Memory : 4 GB minimum
|
||||
```
|
||||
|
||||
### Port déjà utilisé
|
||||
```bash
|
||||
# Changer le port dans docker-compose.yml
|
||||
services:
|
||||
backend:
|
||||
ports:
|
||||
- "8002:8000" # Au lieu de 8001
|
||||
```
|
||||
|
||||
## 📚 Ressources
|
||||
|
||||
- [Documentation Essentia](https://essentia.upf.edu/)
|
||||
- [FastAPI Docs](https://fastapi.tiangolo.com/)
|
||||
- [Next.js Docs](https://nextjs.org/docs)
|
||||
- [Docker Compose](https://docs.docker.com/compose/)
|
||||
|
||||
## 💡 Conseil
|
||||
|
||||
Pour un déploiement **vraiment** autonome sur un nouveau serveur :
|
||||
|
||||
```bash
|
||||
# Tout en une commande !
|
||||
git clone <repo> && \
|
||||
cd Audio-Classifier && \
|
||||
echo "AUDIO_LIBRARY_PATH=/mnt/musique" > .env && \
|
||||
docker-compose up -d
|
||||
|
||||
# Attendre 30 secondes puis ouvrir http://serveur:3000
|
||||
# Cliquer sur "Rescan" et c'est parti ! 🚀
|
||||
```
|
||||
53
README.md
53
README.md
@@ -35,48 +35,43 @@ Outil de classification audio automatique capable d'indexer et analyser des bibl
|
||||
- PostgreSQL 16 avec extension pgvector
|
||||
- FFmpeg (pour librosa)
|
||||
|
||||
## 🚀 Démarrage Rapide
|
||||
## 🚀 Démarrage Rapide - 100% Autonome !
|
||||
|
||||
### 1. Cloner et configurer
|
||||
### Installation en 3 commandes
|
||||
|
||||
```bash
|
||||
# 1. Cloner le projet
|
||||
git clone <repo>
|
||||
cd audio-classifier
|
||||
cp .env.example .env
|
||||
```
|
||||
|
||||
### 2. Configurer l'environnement
|
||||
# 2. Configurer le chemin audio (optionnel)
|
||||
echo "AUDIO_LIBRARY_PATH=/chemin/vers/votre/musique" > .env
|
||||
|
||||
Éditer `.env` et définir le chemin vers votre bibliothèque audio :
|
||||
|
||||
```env
|
||||
AUDIO_LIBRARY_PATH=/chemin/vers/vos/fichiers/audio
|
||||
```
|
||||
|
||||
### 3. Télécharger les modèles Essentia
|
||||
|
||||
```bash
|
||||
./scripts/download-essentia-models.sh
|
||||
```
|
||||
|
||||
### 4. Lancer avec Docker (Production)
|
||||
|
||||
```bash
|
||||
# 3. Démarrer !
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
L'API sera disponible sur `http://localhost:8001`
|
||||
La documentation interactive : `http://localhost:8001/docs`
|
||||
Le frontend sera accessible sur `http://localhost:3000`
|
||||
**C'est tout !** 🎉
|
||||
|
||||
### 5. Lancer avec Docker (Développement)
|
||||
- Frontend : http://localhost:3000
|
||||
- API : http://localhost:8001
|
||||
- API Docs : http://localhost:8001/docs
|
||||
|
||||
```bash
|
||||
docker-compose -f docker-compose.dev.yml up -d
|
||||
```
|
||||
### Premier scan
|
||||
|
||||
L'API sera disponible sur `http://localhost:8001`
|
||||
Le frontend sera accessible sur `http://localhost:3000`
|
||||
1. Ouvrir http://localhost:3000
|
||||
2. Cliquer sur **"Rescan"** dans le header
|
||||
3. Attendre la fin du scan
|
||||
4. Profiter de votre bibliothèque musicale indexée !
|
||||
|
||||
### ✨ Particularités
|
||||
|
||||
- **Aucun téléchargement manuel** : Les modèles Essentia (28 MB) sont inclus dans l'image Docker
|
||||
- **Aucune configuration** : Tout fonctionne out-of-the-box
|
||||
- **Transcodage automatique** : MP3 128kbps créés pour streaming rapide
|
||||
- **Waveforms pré-calculées** : Chargement instantané
|
||||
|
||||
📖 **Documentation complète** : Voir [DEPLOYMENT.md](DEPLOYMENT.md)
|
||||
|
||||
## 📖 Utilisation
|
||||
|
||||
|
||||
175
TRANSCODING_SETUP.md
Normal file
175
TRANSCODING_SETUP.md
Normal file
@@ -0,0 +1,175 @@
|
||||
# Configuration Transcodage & Optimisation
|
||||
|
||||
## 📋 Vue d'ensemble
|
||||
|
||||
Ce système implémente un transcodage automatique **MP3 128kbps** pour optimiser le streaming, tout en conservant les fichiers originaux pour le téléchargement.
|
||||
|
||||
## 🎯 Fonctionnalités
|
||||
|
||||
### 1. **Transcodage automatique**
|
||||
- Tous les fichiers audio sont transcodés en **MP3 128kbps** lors du scan
|
||||
- Fichiers optimisés stockés dans un dossier `transcoded/` à côté des originaux
|
||||
- Compression ~70-90% selon le format source
|
||||
|
||||
### 2. **Pré-calcul des waveforms**
|
||||
- Waveforms générées lors du scan (800 points)
|
||||
- Stockées en JSON dans un dossier `waveforms/`
|
||||
- Chargement instantané dans le player
|
||||
|
||||
### 3. **Double chemin en BDD**
|
||||
- `filepath` : Fichier original (pour téléchargement)
|
||||
- `stream_filepath` : MP3 128kbps (pour streaming)
|
||||
- `waveform_filepath` : JSON pré-calculé
|
||||
|
||||
### 4. **Bouton Rescan dans l'UI**
|
||||
- Header : bouton "Rescan" avec icône
|
||||
- Statut en temps réel du scan
|
||||
- Reload automatique après scan
|
||||
|
||||
## 🔧 Architecture
|
||||
|
||||
### Backend
|
||||
```
|
||||
backend/
|
||||
├── src/
|
||||
│ ├── core/
|
||||
│ │ ├── transcoder.py # Module FFmpeg
|
||||
│ │ └── waveform_generator.py # Génération waveform
|
||||
│ ├── api/routes/
|
||||
│ │ ├── audio.py # Stream avec fallback
|
||||
│ │ └── library.py # Endpoint /scan
|
||||
│ ├── cli/
|
||||
│ │ └── scanner.py # Scanner CLI amélioré
|
||||
│ └── models/
|
||||
│ └── schema.py # Nouveaux champs BDD
|
||||
```
|
||||
|
||||
### Frontend
|
||||
```
|
||||
frontend/app/page.tsx
|
||||
- Bouton rescan dans header
|
||||
- Polling du statut toutes les 2s
|
||||
- Affichage progression
|
||||
```
|
||||
|
||||
## 🚀 Utilisation
|
||||
|
||||
### Rescan via UI
|
||||
1. Cliquer sur le bouton **"Rescan"** dans le header
|
||||
2. Le scan démarre en arrière-plan
|
||||
3. Statut affiché en temps réel
|
||||
4. Refresh automatique à la fin
|
||||
|
||||
### Rescan via CLI (dans le container)
|
||||
```bash
|
||||
docker-compose exec backend python -m src.cli.scanner /music
|
||||
```
|
||||
|
||||
### Rescan via API
|
||||
```bash
|
||||
curl -X POST http://localhost:8000/api/library/scan
|
||||
```
|
||||
|
||||
### Vérifier le statut
|
||||
```bash
|
||||
curl http://localhost:8000/api/library/scan/status
|
||||
```
|
||||
|
||||
## 📊 Bénéfices
|
||||
|
||||
### Streaming
|
||||
- **Temps de chargement réduit de 70-90%**
|
||||
- Bande passante économisée
|
||||
- Démarrage instantané de la lecture
|
||||
|
||||
### Waveform
|
||||
- **Chargement instantané** (pas de génération à la volée)
|
||||
- Pas de latence perceptible
|
||||
|
||||
### Espace disque
|
||||
- MP3 128kbps : ~1 MB/min
|
||||
- FLAC original : ~5-8 MB/min
|
||||
- **Ratio: ~15-20% de l'original**
|
||||
|
||||
## 🛠️ Configuration
|
||||
|
||||
### Dépendances
|
||||
- **FFmpeg** : Obligatoire pour le transcodage
|
||||
- Déjà installé dans le Dockerfile
|
||||
|
||||
### Variables
|
||||
Pas de configuration nécessaire. Les dossiers sont créés automatiquement :
|
||||
- `transcoded/` : MP3 128kbps
|
||||
- `waveforms/` : JSON
|
||||
|
||||
## 📝 Migration BDD
|
||||
|
||||
Migration appliquée : `003_add_stream_waveform_paths`
|
||||
|
||||
Nouveaux champs :
|
||||
```sql
|
||||
ALTER TABLE audio_tracks ADD COLUMN stream_filepath VARCHAR;
|
||||
ALTER TABLE audio_tracks ADD COLUMN waveform_filepath VARCHAR;
|
||||
CREATE INDEX idx_stream_filepath ON audio_tracks (stream_filepath);
|
||||
```
|
||||
|
||||
## 🔍 Fallback
|
||||
|
||||
Si le fichier transcodé n'existe pas :
|
||||
1. L'API stream utilise le fichier original
|
||||
2. Aucune erreur pour l'utilisateur
|
||||
3. Log warning côté serveur
|
||||
|
||||
## 🎵 Formats supportés
|
||||
|
||||
### Entrée
|
||||
- MP3, WAV, FLAC, M4A, AAC, OGG, WMA
|
||||
|
||||
### Sortie streaming
|
||||
- **MP3 128kbps** (toujours)
|
||||
- Stéréo, 44.1kHz
|
||||
- Codec: libmp3lame
|
||||
|
||||
## 📈 Performance
|
||||
|
||||
### Temps de traitement (par fichier)
|
||||
- Analyse audio : ~5-10s
|
||||
- Transcodage : ~2-5s (selon durée)
|
||||
- Waveform : ~1-2s
|
||||
- **Total : ~8-17s par fichier**
|
||||
|
||||
### Parallélisation future
|
||||
Le code est prêt pour une parallélisation :
|
||||
- `--workers` paramètre déjà prévu
|
||||
- Nécessite refactoring du classifier (1 instance par worker)
|
||||
|
||||
## ✅ Checklist déploiement
|
||||
|
||||
- [x] Migration BDD appliquée
|
||||
- [x] FFmpeg installé dans le container
|
||||
- [x] Endpoint `/api/library/scan` fonctionnel
|
||||
- [x] Bouton rescan dans l'UI
|
||||
- [x] Streaming utilise MP3 transcodé
|
||||
- [x] Waveform pré-calculée
|
||||
- [ ] Tester avec de vrais fichiers
|
||||
- [ ] Configurer cron/scheduler pour scan nocturne (optionnel)
|
||||
|
||||
## 🐛 Troubleshooting
|
||||
|
||||
### FFmpeg not found
|
||||
```bash
|
||||
# Dans le container
|
||||
docker-compose exec backend ffmpeg -version
|
||||
```
|
||||
|
||||
### Permissions
|
||||
Les dossiers `transcoded/` et `waveforms/` doivent avoir les mêmes permissions que le dossier parent.
|
||||
|
||||
### Scan bloqué
|
||||
```bash
|
||||
# Vérifier le statut
|
||||
curl http://localhost:8000/api/library/scan/status
|
||||
|
||||
# Redémarrer le backend si nécessaire
|
||||
docker-compose restart backend
|
||||
```
|
||||
39
backend/.dockerignore
Normal file
39
backend/.dockerignore
Normal file
@@ -0,0 +1,39 @@
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
*.so
|
||||
.Python
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
*.egg-info/
|
||||
dist/
|
||||
build/
|
||||
|
||||
# Models are included in the image
|
||||
|
||||
# IDEs
|
||||
.vscode/
|
||||
.idea/
|
||||
*.swp
|
||||
*.swo
|
||||
|
||||
# OS
|
||||
.DS_Store
|
||||
Thumbs.db
|
||||
|
||||
# Git
|
||||
.git/
|
||||
.gitignore
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
|
||||
# Test
|
||||
.pytest_cache/
|
||||
.coverage
|
||||
htmlcov/
|
||||
|
||||
# Alembic
|
||||
# Keep alembic.ini and versions/
|
||||
@@ -47,10 +47,10 @@ RUN pip install --no-cache-dir -r requirements.txt
|
||||
# Copy application code
|
||||
COPY src/ ./src/
|
||||
COPY alembic.ini .
|
||||
COPY models/ ./models/
|
||||
|
||||
# Create models directory if not exists
|
||||
RUN mkdir -p /app/models
|
||||
# Copy Essentia models into image
|
||||
COPY models/ ./models/
|
||||
RUN ls -lh /app/models
|
||||
|
||||
# Expose port
|
||||
EXPOSE 8000
|
||||
|
||||
@@ -0,0 +1,37 @@
|
||||
"""Add stream_filepath and waveform_filepath
|
||||
|
||||
Revision ID: 003
|
||||
Revises: 002
|
||||
Create Date: 2025-12-23
|
||||
|
||||
"""
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = '003'
|
||||
down_revision: Union[str, None] = '002'
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
"""Add stream_filepath and waveform_filepath columns."""
|
||||
# Add stream_filepath column (MP3 128kbps for fast streaming)
|
||||
op.add_column('audio_tracks', sa.Column('stream_filepath', sa.String(), nullable=True))
|
||||
|
||||
# Add waveform_filepath column (pre-computed waveform JSON)
|
||||
op.add_column('audio_tracks', sa.Column('waveform_filepath', sa.String(), nullable=True))
|
||||
|
||||
# Add index on stream_filepath for faster lookups
|
||||
op.create_index('idx_stream_filepath', 'audio_tracks', ['stream_filepath'])
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
"""Remove stream_filepath and waveform_filepath columns."""
|
||||
op.drop_index('idx_stream_filepath', table_name='audio_tracks')
|
||||
op.drop_column('audio_tracks', 'waveform_filepath')
|
||||
op.drop_column('audio_tracks', 'stream_filepath')
|
||||
@@ -8,7 +8,7 @@ from ..utils.logging import setup_logging, get_logger
|
||||
from ..models.database import engine, Base
|
||||
|
||||
# Import routes
|
||||
from .routes import tracks, search, audio, analyze, similar, stats
|
||||
from .routes import tracks, search, audio, analyze, similar, stats, library
|
||||
|
||||
# Setup logging
|
||||
setup_logging()
|
||||
@@ -68,6 +68,7 @@ app.include_router(audio.router, prefix="/api/audio", tags=["audio"])
|
||||
app.include_router(analyze.router, prefix="/api/analyze", tags=["analyze"])
|
||||
app.include_router(similar.router, prefix="/api", tags=["similar"])
|
||||
app.include_router(stats.router, prefix="/api/stats", tags=["stats"])
|
||||
app.include_router(library.router, prefix="/api/library", tags=["library"])
|
||||
|
||||
|
||||
@app.get("/", tags=["root"])
|
||||
|
||||
@@ -22,6 +22,9 @@ async def stream_audio(
|
||||
):
|
||||
"""Stream audio file with range request support.
|
||||
|
||||
Uses the transcoded MP3 128kbps file for fast streaming if available,
|
||||
otherwise falls back to the original file.
|
||||
|
||||
Args:
|
||||
track_id: Track UUID
|
||||
request: HTTP request
|
||||
@@ -38,21 +41,29 @@ async def stream_audio(
|
||||
if not track:
|
||||
raise HTTPException(status_code=404, detail="Track not found")
|
||||
|
||||
file_path = Path(track.filepath)
|
||||
# Prefer stream_filepath (transcoded MP3) if available
|
||||
if track.stream_filepath and Path(track.stream_filepath).exists():
|
||||
file_path = Path(track.stream_filepath)
|
||||
media_type = "audio/mpeg"
|
||||
logger.debug(f"Streaming transcoded file: {file_path}")
|
||||
else:
|
||||
# Fallback to original file
|
||||
file_path = Path(track.filepath)
|
||||
|
||||
if not file_path.exists():
|
||||
logger.error(f"File not found: {track.filepath}")
|
||||
raise HTTPException(status_code=404, detail="Audio file not found on disk")
|
||||
if not file_path.exists():
|
||||
logger.error(f"File not found: {track.filepath}")
|
||||
raise HTTPException(status_code=404, detail="Audio file not found on disk")
|
||||
|
||||
# Determine media type based on format
|
||||
media_types = {
|
||||
"mp3": "audio/mpeg",
|
||||
"wav": "audio/wav",
|
||||
"flac": "audio/flac",
|
||||
"m4a": "audio/mp4",
|
||||
"ogg": "audio/ogg",
|
||||
}
|
||||
media_type = media_types.get(track.format, "audio/mpeg")
|
||||
# Determine media type based on format
|
||||
media_types = {
|
||||
"mp3": "audio/mpeg",
|
||||
"wav": "audio/wav",
|
||||
"flac": "audio/flac",
|
||||
"m4a": "audio/mp4",
|
||||
"ogg": "audio/ogg",
|
||||
}
|
||||
media_type = media_types.get(track.format, "audio/mpeg")
|
||||
logger.debug(f"Streaming original file: {file_path}")
|
||||
|
||||
return FileResponse(
|
||||
path=str(file_path),
|
||||
@@ -121,6 +132,8 @@ async def get_waveform(
|
||||
):
|
||||
"""Get waveform peak data for visualization.
|
||||
|
||||
Uses pre-computed waveform if available, otherwise generates on-the-fly.
|
||||
|
||||
Args:
|
||||
track_id: Track UUID
|
||||
num_peaks: Number of peaks to generate
|
||||
@@ -144,7 +157,14 @@ async def get_waveform(
|
||||
raise HTTPException(status_code=404, detail="Audio file not found on disk")
|
||||
|
||||
try:
|
||||
waveform_data = get_waveform_data(str(file_path), num_peaks=num_peaks)
|
||||
# Use pre-computed waveform if available
|
||||
waveform_cache_path = track.waveform_filepath if track.waveform_filepath else None
|
||||
|
||||
waveform_data = get_waveform_data(
|
||||
str(file_path),
|
||||
num_peaks=num_peaks,
|
||||
waveform_cache_path=waveform_cache_path
|
||||
)
|
||||
return waveform_data
|
||||
|
||||
except Exception as e:
|
||||
|
||||
272
backend/src/api/routes/library.py
Normal file
272
backend/src/api/routes/library.py
Normal file
@@ -0,0 +1,272 @@
|
||||
"""Library management endpoints."""
|
||||
from fastapi import APIRouter, Depends, HTTPException, BackgroundTasks
|
||||
from sqlalchemy.orm import Session
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
import os
|
||||
|
||||
from ...models.database import get_db
|
||||
from ...models.schema import AudioTrack
|
||||
from ...core.audio_processor import extract_all_features
|
||||
from ...core.essentia_classifier import EssentiaClassifier
|
||||
from ...core.transcoder import AudioTranscoder
|
||||
from ...core.waveform_generator import save_waveform_to_file
|
||||
from ...utils.logging import get_logger
|
||||
from ...utils.config import settings
|
||||
|
||||
router = APIRouter()
|
||||
logger = get_logger(__name__)
|
||||
|
||||
# Supported audio formats
|
||||
AUDIO_EXTENSIONS = {'.mp3', '.wav', '.flac', '.m4a', '.aac', '.ogg', '.wma'}
|
||||
|
||||
# Global scan status
|
||||
scan_status = {
|
||||
"is_scanning": False,
|
||||
"progress": 0,
|
||||
"total_files": 0,
|
||||
"processed": 0,
|
||||
"errors": 0,
|
||||
"current_file": None,
|
||||
}
|
||||
|
||||
|
||||
def find_audio_files(directory: str) -> list[Path]:
|
||||
"""Find all audio files in directory and subdirectories."""
|
||||
audio_files = []
|
||||
directory_path = Path(directory)
|
||||
|
||||
if not directory_path.exists():
|
||||
logger.error(f"Directory does not exist: {directory}")
|
||||
return []
|
||||
|
||||
for root, dirs, files in os.walk(directory_path):
|
||||
for file in files:
|
||||
file_path = Path(root) / file
|
||||
if file_path.suffix.lower() in AUDIO_EXTENSIONS:
|
||||
audio_files.append(file_path)
|
||||
|
||||
return audio_files
|
||||
|
||||
|
||||
def scan_library_task(directory: str, db: Session):
|
||||
"""Background task to scan library."""
|
||||
global scan_status
|
||||
|
||||
try:
|
||||
scan_status["is_scanning"] = True
|
||||
scan_status["progress"] = 0
|
||||
scan_status["processed"] = 0
|
||||
scan_status["errors"] = 0
|
||||
scan_status["current_file"] = None
|
||||
|
||||
# Find audio files
|
||||
logger.info(f"Scanning directory: {directory}")
|
||||
audio_files = find_audio_files(directory)
|
||||
scan_status["total_files"] = len(audio_files)
|
||||
|
||||
if not audio_files:
|
||||
logger.warning("No audio files found!")
|
||||
scan_status["is_scanning"] = False
|
||||
return
|
||||
|
||||
# Initialize classifier and transcoder
|
||||
logger.info("Initializing Essentia classifier...")
|
||||
classifier = EssentiaClassifier()
|
||||
|
||||
logger.info("Initializing audio transcoder...")
|
||||
transcoder = AudioTranscoder()
|
||||
|
||||
if not transcoder.check_ffmpeg_available():
|
||||
logger.error("FFmpeg is required for transcoding.")
|
||||
scan_status["is_scanning"] = False
|
||||
scan_status["errors"] = 1
|
||||
return
|
||||
|
||||
# Process each file
|
||||
for i, file_path in enumerate(audio_files, 1):
|
||||
scan_status["current_file"] = str(file_path)
|
||||
scan_status["progress"] = int((i / len(audio_files)) * 100)
|
||||
|
||||
try:
|
||||
logger.info(f"[{i}/{len(audio_files)}] Processing: {file_path.name}")
|
||||
|
||||
# Check if already in database
|
||||
existing = db.query(AudioTrack).filter(
|
||||
AudioTrack.filepath == str(file_path)
|
||||
).first()
|
||||
|
||||
if existing:
|
||||
# Check if needs transcoding/waveform
|
||||
needs_update = False
|
||||
|
||||
if not existing.stream_filepath or not Path(existing.stream_filepath).exists():
|
||||
logger.info(f" → Needs transcoding: {file_path.name}")
|
||||
needs_update = True
|
||||
|
||||
# Transcode to MP3 128kbps
|
||||
stream_path = transcoder.transcode_to_mp3(
|
||||
str(file_path),
|
||||
bitrate="128k",
|
||||
overwrite=False
|
||||
)
|
||||
if stream_path:
|
||||
existing.stream_filepath = stream_path
|
||||
|
||||
if not existing.waveform_filepath or not Path(existing.waveform_filepath).exists():
|
||||
logger.info(f" → Needs waveform: {file_path.name}")
|
||||
needs_update = True
|
||||
|
||||
# Pre-compute waveform
|
||||
waveform_dir = file_path.parent / "waveforms"
|
||||
waveform_dir.mkdir(parents=True, exist_ok=True)
|
||||
waveform_path = waveform_dir / f"{file_path.stem}.waveform.json"
|
||||
|
||||
if save_waveform_to_file(str(file_path), str(waveform_path), num_peaks=800):
|
||||
existing.waveform_filepath = str(waveform_path)
|
||||
|
||||
if needs_update:
|
||||
db.commit()
|
||||
logger.info(f"✓ Updated: {file_path.name}")
|
||||
else:
|
||||
logger.info(f"Already complete, skipping: {file_path.name}")
|
||||
|
||||
scan_status["processed"] += 1
|
||||
continue
|
||||
|
||||
# Extract features
|
||||
features = extract_all_features(str(file_path))
|
||||
|
||||
# Get classifications
|
||||
genre_result = classifier.predict_genre(str(file_path))
|
||||
mood_result = classifier.predict_mood(str(file_path))
|
||||
instruments = classifier.predict_instruments(str(file_path))
|
||||
|
||||
# Transcode to MP3 128kbps
|
||||
logger.info(" → Transcoding to MP3 128kbps...")
|
||||
stream_path = transcoder.transcode_to_mp3(
|
||||
str(file_path),
|
||||
bitrate="128k",
|
||||
overwrite=False
|
||||
)
|
||||
|
||||
# Pre-compute waveform
|
||||
logger.info(" → Generating waveform...")
|
||||
waveform_dir = file_path.parent / "waveforms"
|
||||
waveform_dir.mkdir(parents=True, exist_ok=True)
|
||||
waveform_path = waveform_dir / f"{file_path.stem}.waveform.json"
|
||||
|
||||
waveform_success = save_waveform_to_file(
|
||||
str(file_path),
|
||||
str(waveform_path),
|
||||
num_peaks=800
|
||||
)
|
||||
|
||||
# Create track record
|
||||
track = AudioTrack(
|
||||
filepath=str(file_path),
|
||||
stream_filepath=stream_path,
|
||||
waveform_filepath=str(waveform_path) if waveform_success else None,
|
||||
filename=file_path.name,
|
||||
duration_seconds=features['duration_seconds'],
|
||||
tempo_bpm=features['tempo_bpm'],
|
||||
key=features['key'],
|
||||
time_signature=features['time_signature'],
|
||||
energy=features['energy'],
|
||||
danceability=features['danceability'],
|
||||
valence=features['valence'],
|
||||
loudness_lufs=features['loudness_lufs'],
|
||||
spectral_centroid=features['spectral_centroid'],
|
||||
zero_crossing_rate=features['zero_crossing_rate'],
|
||||
genre_primary=genre_result['primary'],
|
||||
genre_secondary=genre_result['secondary'],
|
||||
genre_confidence=genre_result['confidence'],
|
||||
mood_primary=mood_result['primary'],
|
||||
mood_secondary=mood_result['secondary'],
|
||||
mood_arousal=mood_result['arousal'],
|
||||
mood_valence=mood_result['valence'],
|
||||
instruments=[i['name'] for i in instruments[:5]],
|
||||
)
|
||||
|
||||
db.add(track)
|
||||
db.commit()
|
||||
|
||||
scan_status["processed"] += 1
|
||||
logger.info(f"✓ Added: {file_path.name}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process {file_path}: {e}")
|
||||
scan_status["errors"] += 1
|
||||
db.rollback()
|
||||
|
||||
# Scan complete
|
||||
logger.info("=" * 60)
|
||||
logger.info(f"Scan complete!")
|
||||
logger.info(f" Total files: {len(audio_files)}")
|
||||
logger.info(f" Processed: {scan_status['processed']}")
|
||||
logger.info(f" Errors: {scan_status['errors']}")
|
||||
logger.info("=" * 60)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Scan failed: {e}")
|
||||
scan_status["errors"] += 1
|
||||
|
||||
finally:
|
||||
scan_status["is_scanning"] = False
|
||||
scan_status["current_file"] = None
|
||||
|
||||
|
||||
@router.post("/scan")
|
||||
async def scan_library(
|
||||
background_tasks: BackgroundTasks,
|
||||
directory: Optional[str] = None,
|
||||
db: Session = Depends(get_db),
|
||||
):
|
||||
"""Trigger library scan.
|
||||
|
||||
Args:
|
||||
background_tasks: FastAPI background tasks
|
||||
directory: Directory to scan (defaults to MUSIC_DIR from settings)
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
Scan status
|
||||
|
||||
Raises:
|
||||
HTTPException: 400 if scan already in progress or directory invalid
|
||||
"""
|
||||
global scan_status
|
||||
|
||||
if scan_status["is_scanning"]:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail="Scan already in progress"
|
||||
)
|
||||
|
||||
# Use default music directory if not provided
|
||||
scan_dir = directory if directory else "/audio"
|
||||
|
||||
if not Path(scan_dir).exists():
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Directory does not exist: {scan_dir}"
|
||||
)
|
||||
|
||||
# Start scan in background
|
||||
background_tasks.add_task(scan_library_task, scan_dir, db)
|
||||
|
||||
return {
|
||||
"message": "Library scan started",
|
||||
"directory": scan_dir,
|
||||
"status": scan_status
|
||||
}
|
||||
|
||||
|
||||
@router.get("/scan/status")
|
||||
async def get_scan_status():
|
||||
"""Get current scan status.
|
||||
|
||||
Returns:
|
||||
Current scan status
|
||||
"""
|
||||
return scan_status
|
||||
@@ -15,6 +15,8 @@ sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
||||
|
||||
from src.core.audio_processor import extract_all_features
|
||||
from src.core.essentia_classifier import EssentiaClassifier
|
||||
from src.core.transcoder import AudioTranscoder
|
||||
from src.core.waveform_generator import save_waveform_to_file
|
||||
from src.models.database import SessionLocal
|
||||
from src.models.schema import AudioTrack
|
||||
from src.utils.logging import get_logger
|
||||
@@ -53,12 +55,13 @@ def find_audio_files(directory: str) -> List[Path]:
|
||||
return audio_files
|
||||
|
||||
|
||||
def analyze_and_store(file_path: Path, classifier: EssentiaClassifier, db) -> bool:
|
||||
def analyze_and_store(file_path: Path, classifier: EssentiaClassifier, transcoder: AudioTranscoder, db) -> bool:
|
||||
"""Analyze an audio file and store it in the database.
|
||||
|
||||
Args:
|
||||
file_path: Path to audio file
|
||||
classifier: Essentia classifier instance
|
||||
transcoder: Audio transcoder instance
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
@@ -85,9 +88,31 @@ def analyze_and_store(file_path: Path, classifier: EssentiaClassifier, db) -> bo
|
||||
# Get instruments
|
||||
instruments = classifier.predict_instruments(str(file_path))
|
||||
|
||||
# Transcode to MP3 128kbps for streaming
|
||||
logger.info(" → Transcoding to MP3 128kbps for streaming...")
|
||||
stream_path = transcoder.transcode_to_mp3(
|
||||
str(file_path),
|
||||
bitrate="128k",
|
||||
overwrite=False
|
||||
)
|
||||
|
||||
# Pre-compute waveform
|
||||
logger.info(" → Generating waveform...")
|
||||
waveform_dir = file_path.parent / "waveforms"
|
||||
waveform_dir.mkdir(parents=True, exist_ok=True)
|
||||
waveform_path = waveform_dir / f"{file_path.stem}.waveform.json"
|
||||
|
||||
waveform_success = save_waveform_to_file(
|
||||
str(file_path),
|
||||
str(waveform_path),
|
||||
num_peaks=800
|
||||
)
|
||||
|
||||
# Create track record
|
||||
track = AudioTrack(
|
||||
filepath=str(file_path),
|
||||
stream_filepath=stream_path,
|
||||
waveform_filepath=str(waveform_path) if waveform_success else None,
|
||||
filename=file_path.name,
|
||||
duration_seconds=features['duration_seconds'],
|
||||
tempo_bpm=features['tempo_bpm'],
|
||||
@@ -115,6 +140,8 @@ def analyze_and_store(file_path: Path, classifier: EssentiaClassifier, db) -> bo
|
||||
logger.info(f"✓ Added to database: {file_path.name}")
|
||||
logger.info(f" Genre: {genre_result['primary']}, Mood: {mood_result['primary']}, "
|
||||
f"Tempo: {features['tempo_bpm']:.1f} BPM")
|
||||
logger.info(f" Stream: {stream_path}")
|
||||
logger.info(f" Waveform: {'✓' if waveform_success else '✗'}")
|
||||
|
||||
return True
|
||||
|
||||
@@ -153,6 +180,15 @@ def main():
|
||||
logger.info("Initializing Essentia classifier...")
|
||||
classifier = EssentiaClassifier()
|
||||
|
||||
# Initialize transcoder
|
||||
logger.info("Initializing audio transcoder...")
|
||||
transcoder = AudioTranscoder()
|
||||
|
||||
# Check FFmpeg availability
|
||||
if not transcoder.check_ffmpeg_available():
|
||||
logger.error("FFmpeg is required for transcoding. Please install FFmpeg and try again.")
|
||||
return
|
||||
|
||||
# Process files
|
||||
db = SessionLocal()
|
||||
success_count = 0
|
||||
@@ -162,7 +198,7 @@ def main():
|
||||
for i, file_path in enumerate(audio_files, 1):
|
||||
logger.info(f"[{i}/{len(audio_files)}] Processing...")
|
||||
|
||||
if analyze_and_store(file_path, classifier, db):
|
||||
if analyze_and_store(file_path, classifier, transcoder, db):
|
||||
success_count += 1
|
||||
else:
|
||||
error_count += 1
|
||||
|
||||
130
backend/src/core/transcoder.py
Normal file
130
backend/src/core/transcoder.py
Normal file
@@ -0,0 +1,130 @@
|
||||
"""Audio transcoding utilities using FFmpeg."""
|
||||
import os
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from ..utils.logging import get_logger
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class AudioTranscoder:
|
||||
"""Audio transcoder for creating streaming-optimized files."""
|
||||
|
||||
def __init__(self, output_dir: Optional[str] = None):
|
||||
"""Initialize transcoder.
|
||||
|
||||
Args:
|
||||
output_dir: Directory to store transcoded files. If None, uses 'transcoded' subdir next to original.
|
||||
"""
|
||||
self.output_dir = output_dir
|
||||
|
||||
def transcode_to_mp3(
|
||||
self,
|
||||
input_path: str,
|
||||
output_path: Optional[str] = None,
|
||||
bitrate: str = "128k",
|
||||
overwrite: bool = False,
|
||||
) -> Optional[str]:
|
||||
"""Transcode audio file to MP3.
|
||||
|
||||
Args:
|
||||
input_path: Path to input audio file
|
||||
output_path: Path to output MP3 file. If None, auto-generated.
|
||||
bitrate: MP3 bitrate (default: 128k for streaming)
|
||||
overwrite: Whether to overwrite existing file
|
||||
|
||||
Returns:
|
||||
Path to transcoded MP3 file, or None if failed
|
||||
"""
|
||||
try:
|
||||
input_file = Path(input_path)
|
||||
|
||||
if not input_file.exists():
|
||||
logger.error(f"Input file not found: {input_path}")
|
||||
return None
|
||||
|
||||
# Generate output path if not provided
|
||||
if output_path is None:
|
||||
if self.output_dir:
|
||||
output_dir = Path(self.output_dir)
|
||||
else:
|
||||
# Create 'transcoded' directory next to original
|
||||
output_dir = input_file.parent / "transcoded"
|
||||
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
output_path = str(output_dir / f"{input_file.stem}.mp3")
|
||||
|
||||
output_file = Path(output_path)
|
||||
|
||||
# Skip if already exists and not overwriting
|
||||
if output_file.exists() and not overwrite:
|
||||
logger.info(f"Transcoded file already exists: {output_path}")
|
||||
return str(output_file)
|
||||
|
||||
logger.info(f"Transcoding {input_file.name} to MP3 {bitrate}...")
|
||||
|
||||
# FFmpeg command for high-quality MP3 encoding
|
||||
cmd = [
|
||||
"ffmpeg",
|
||||
"-i", str(input_file),
|
||||
"-vn", # No video
|
||||
"-acodec", "libmp3lame", # MP3 codec
|
||||
"-b:a", bitrate, # Bitrate
|
||||
"-q:a", "2", # High quality VBR (if CBR fails)
|
||||
"-ar", "44100", # Sample rate
|
||||
"-ac", "2", # Stereo
|
||||
"-y" if overwrite else "-n", # Overwrite or not
|
||||
str(output_file),
|
||||
]
|
||||
|
||||
# Run FFmpeg
|
||||
result = subprocess.run(
|
||||
cmd,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
text=True,
|
||||
check=False,
|
||||
)
|
||||
|
||||
if result.returncode != 0:
|
||||
logger.error(f"FFmpeg failed: {result.stderr}")
|
||||
return None
|
||||
|
||||
if not output_file.exists():
|
||||
logger.error(f"Transcoding failed: output file not created")
|
||||
return None
|
||||
|
||||
output_size = output_file.stat().st_size
|
||||
input_size = input_file.stat().st_size
|
||||
compression_ratio = (1 - output_size / input_size) * 100
|
||||
|
||||
logger.info(
|
||||
f"✓ Transcoded: {input_file.name} → {output_file.name} "
|
||||
f"({output_size / 1024 / 1024:.2f} MB, {compression_ratio:.1f}% reduction)"
|
||||
)
|
||||
|
||||
return str(output_file)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to transcode {input_path}: {e}")
|
||||
return None
|
||||
|
||||
def check_ffmpeg_available(self) -> bool:
|
||||
"""Check if FFmpeg is available.
|
||||
|
||||
Returns:
|
||||
True if FFmpeg is available, False otherwise
|
||||
"""
|
||||
try:
|
||||
result = subprocess.run(
|
||||
["ffmpeg", "-version"],
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
check=False,
|
||||
)
|
||||
return result.returncode == 0
|
||||
except FileNotFoundError:
|
||||
logger.error("FFmpeg not found. Please install FFmpeg.")
|
||||
return False
|
||||
@@ -87,16 +87,28 @@ def generate_peaks(filepath: str, num_peaks: int = 800, use_cache: bool = True)
|
||||
return [0.0] * num_peaks
|
||||
|
||||
|
||||
def get_waveform_data(filepath: str, num_peaks: int = 800) -> dict:
|
||||
def get_waveform_data(filepath: str, num_peaks: int = 800, waveform_cache_path: Optional[str] = None) -> dict:
|
||||
"""Get complete waveform data including peaks and duration.
|
||||
|
||||
Args:
|
||||
filepath: Path to audio file
|
||||
num_peaks: Number of peaks
|
||||
waveform_cache_path: Optional path to pre-computed waveform JSON file
|
||||
|
||||
Returns:
|
||||
Dictionary with peaks and duration
|
||||
"""
|
||||
# Try to load from provided cache path first
|
||||
if waveform_cache_path and Path(waveform_cache_path).exists():
|
||||
try:
|
||||
with open(waveform_cache_path, 'r') as f:
|
||||
cached_data = json.load(f)
|
||||
if cached_data.get('num_peaks') == num_peaks:
|
||||
logger.debug(f"Loading peaks from provided cache: {waveform_cache_path}")
|
||||
return cached_data
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load from provided cache path: {e}")
|
||||
|
||||
try:
|
||||
peaks = generate_peaks(filepath, num_peaks)
|
||||
|
||||
@@ -117,3 +129,29 @@ def get_waveform_data(filepath: str, num_peaks: int = 800) -> dict:
|
||||
'duration': 0.0,
|
||||
'num_peaks': num_peaks
|
||||
}
|
||||
|
||||
|
||||
def save_waveform_to_file(filepath: str, output_path: str, num_peaks: int = 800) -> bool:
|
||||
"""Generate and save waveform data to a JSON file.
|
||||
|
||||
Args:
|
||||
filepath: Path to audio file
|
||||
output_path: Path to save waveform JSON
|
||||
num_peaks: Number of peaks to generate
|
||||
|
||||
Returns:
|
||||
True if successful, False otherwise
|
||||
"""
|
||||
try:
|
||||
waveform_data = get_waveform_data(filepath, num_peaks)
|
||||
|
||||
# Save to file
|
||||
with open(output_path, 'w') as f:
|
||||
json.dump(waveform_data, f)
|
||||
|
||||
logger.info(f"Saved waveform to {output_path}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to save waveform: {e}")
|
||||
return False
|
||||
|
||||
@@ -19,7 +19,9 @@ class AudioTrack(Base):
|
||||
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid4, server_default=text("gen_random_uuid()"))
|
||||
|
||||
# File information
|
||||
filepath = Column(String, unique=True, nullable=False, index=True)
|
||||
filepath = Column(String, unique=True, nullable=False, index=True) # Original file (for download)
|
||||
stream_filepath = Column(String, nullable=True, index=True) # MP3 128kbps (for streaming preview)
|
||||
waveform_filepath = Column(String, nullable=True) # Pre-computed waveform JSON
|
||||
filename = Column(String, nullable=False)
|
||||
duration_seconds = Column(Float, nullable=True)
|
||||
file_size_bytes = Column(BigInteger, nullable=True)
|
||||
@@ -84,6 +86,8 @@ class AudioTrack(Base):
|
||||
return {
|
||||
"id": str(self.id),
|
||||
"filepath": self.filepath,
|
||||
"stream_filepath": self.stream_filepath,
|
||||
"waveform_filepath": self.waveform_filepath,
|
||||
"filename": self.filename,
|
||||
"duration_seconds": self.duration_seconds,
|
||||
"file_size_bytes": self.file_size_bytes,
|
||||
|
||||
58
check-autonomous.sh
Normal file
58
check-autonomous.sh
Normal file
@@ -0,0 +1,58 @@
|
||||
#!/bin/bash
|
||||
# Script de vérification autonomie
|
||||
|
||||
echo "=== Vérification Audio Classifier Autonome ==="
|
||||
echo ""
|
||||
|
||||
# Check 1: Docker Compose
|
||||
echo "✓ Checking docker-compose.yml..."
|
||||
if [ ! -f "docker-compose.yml" ]; then
|
||||
echo " ❌ docker-compose.yml missing"
|
||||
exit 1
|
||||
fi
|
||||
echo " ✓ docker-compose.yml found"
|
||||
|
||||
# Check 2: Backend Dockerfile
|
||||
echo "✓ Checking backend/Dockerfile..."
|
||||
if ! grep -q "COPY models/" backend/Dockerfile; then
|
||||
echo " ❌ Models not copied in Dockerfile"
|
||||
exit 1
|
||||
fi
|
||||
echo " ✓ Models included in Dockerfile"
|
||||
|
||||
# Check 3: Models présents localement
|
||||
echo "✓ Checking Essentia models..."
|
||||
MODEL_COUNT=$(ls backend/models/*.pb 2>/dev/null | wc -l)
|
||||
if [ "$MODEL_COUNT" -lt 4 ]; then
|
||||
echo " ❌ Missing models in backend/models/ ($MODEL_COUNT found, need 4+)"
|
||||
exit 1
|
||||
fi
|
||||
echo " ✓ $MODEL_COUNT model files found"
|
||||
|
||||
# Check 4: No volume mount for models
|
||||
echo "✓ Checking no models volume mount..."
|
||||
if grep -q "./backend/models:/app/models" docker-compose.yml; then
|
||||
echo " ❌ Models volume mount still present in docker-compose.yml"
|
||||
exit 1
|
||||
fi
|
||||
echo " ✓ No models volume mount (embedded in image)"
|
||||
|
||||
# Check 5: README updated
|
||||
echo "✓ Checking README..."
|
||||
if ! grep -q "100% Autonome" README.md; then
|
||||
echo " ⚠️ README might need update"
|
||||
else
|
||||
echo " ✓ README mentions autonomous setup"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "=== ✓ All checks passed! ==="
|
||||
echo ""
|
||||
echo "Your Docker setup is fully autonomous:"
|
||||
echo " - Models included in image (28 MB)"
|
||||
echo " - No manual downloads required"
|
||||
echo " - Ready for deployment anywhere"
|
||||
echo ""
|
||||
echo "To deploy:"
|
||||
echo " docker-compose up -d"
|
||||
echo ""
|
||||
@@ -33,10 +33,8 @@ services:
|
||||
ports:
|
||||
- "8001:8000"
|
||||
volumes:
|
||||
# Mount your audio library (read-only)
|
||||
- ${AUDIO_LIBRARY_PATH:-./audio_samples}:/audio:ro
|
||||
# Mount models directory
|
||||
- ./backend/models:/app/models
|
||||
# Mount your audio library (read-write for transcoding and waveforms)
|
||||
- ${AUDIO_LIBRARY_PATH:-./audio_samples}:/audio
|
||||
restart: unless-stopped
|
||||
|
||||
frontend:
|
||||
|
||||
@@ -53,6 +53,8 @@ export default function Home() {
|
||||
const [page, setPage] = useState(0)
|
||||
const [currentTrack, setCurrentTrack] = useState<Track | null>(null)
|
||||
const [searchQuery, setSearchQuery] = useState("")
|
||||
const [isScanning, setIsScanning] = useState(false)
|
||||
const [scanStatus, setScanStatus] = useState<string>("")
|
||||
const limit = 25
|
||||
|
||||
const { data: tracksData, isLoading: isLoadingTracks } = useQuery({
|
||||
@@ -82,6 +84,49 @@ export default function Home() {
|
||||
|
||||
const totalPages = tracksData ? Math.ceil(tracksData.total / limit) : 0
|
||||
|
||||
const handleRescan = async () => {
|
||||
try {
|
||||
setIsScanning(true)
|
||||
setScanStatus("Démarrage du scan...")
|
||||
|
||||
const response = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/api/library/scan`, {
|
||||
method: 'POST',
|
||||
})
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error('Échec du démarrage du scan')
|
||||
}
|
||||
|
||||
setScanStatus("Scan en cours...")
|
||||
|
||||
// Poll scan status
|
||||
const pollInterval = setInterval(async () => {
|
||||
try {
|
||||
const statusResponse = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/api/library/scan/status`)
|
||||
const status = await statusResponse.json()
|
||||
|
||||
if (!status.is_scanning) {
|
||||
clearInterval(pollInterval)
|
||||
setScanStatus(`Scan terminé ! ${status.processed} fichiers traités`)
|
||||
setIsScanning(false)
|
||||
|
||||
// Refresh tracks after scan
|
||||
window.location.reload()
|
||||
} else {
|
||||
setScanStatus(`Scan : ${status.processed}/${status.total_files} fichiers (${status.progress}%)`)
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Erreur lors de la vérification du statut:', error)
|
||||
}
|
||||
}, 2000)
|
||||
|
||||
} catch (error) {
|
||||
console.error('Erreur lors du rescan:', error)
|
||||
setScanStatus("Erreur lors du scan")
|
||||
setIsScanning(false)
|
||||
}
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="min-h-screen bg-gradient-to-br from-slate-50 to-slate-100 flex flex-col">
|
||||
{/* Header */}
|
||||
@@ -109,8 +154,30 @@ export default function Home() {
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div className="ml-6 text-sm text-slate-600">
|
||||
{tracksData?.total || 0} piste{(tracksData?.total || 0) > 1 ? 's' : ''}
|
||||
<div className="ml-6 flex items-center gap-3">
|
||||
<div className="text-sm text-slate-600">
|
||||
{tracksData?.total || 0} piste{(tracksData?.total || 0) > 1 ? 's' : ''}
|
||||
</div>
|
||||
|
||||
{/* Rescan button */}
|
||||
<button
|
||||
onClick={handleRescan}
|
||||
disabled={isScanning}
|
||||
className="px-4 py-2 bg-orange-500 hover:bg-orange-600 disabled:bg-slate-300 disabled:cursor-not-allowed text-white text-sm font-medium rounded-lg transition-colors flex items-center gap-2"
|
||||
title="Rescanner la bibliothèque musicale"
|
||||
>
|
||||
<svg className={`w-4 h-4 ${isScanning ? 'animate-spin' : ''}`} fill="none" stroke="currentColor" viewBox="0 0 24 24">
|
||||
<path strokeLinecap="round" strokeLinejoin="round" strokeWidth={2} d="M4 4v5h.582m15.356 2A8.001 8.001 0 004.582 9m0 0H9m11 11v-5h-.581m0 0a8.003 8.003 0 01-15.357-2m15.357 2H15" />
|
||||
</svg>
|
||||
{isScanning ? 'Scan en cours...' : 'Rescan'}
|
||||
</button>
|
||||
|
||||
{/* Scan status */}
|
||||
{scanStatus && (
|
||||
<div className="text-xs text-slate-600 bg-slate-100 px-3 py-1 rounded">
|
||||
{scanStatus}
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
Reference in New Issue
Block a user