Build Docker Complètement Autonome - Terminé !

🎯 Ce qui a été fait
1. Modèles intégrés dans l'image Docker 
Les 5 modèles Essentia (28 MB total) sont maintenant copiés directement dans l'image
Pas besoin de volume mount /backend/models:/app/models
Dockerfile modifié pour inclure COPY models/ ./models/
2. Volume models supprimé du docker-compose 
Le docker-compose.yml ne monte plus le dossier models/
Seul le dossier audio est monté (pour accès aux fichiers)
3. Dockerignore configuré 
Les modèles ne sont plus ignorés
Copiés dans l'image lors du build
4. Documentation complète 
DEPLOYMENT.md - Guide de déploiement complet
README.md - Mise à jour avec instructions autonomes
Script check-autonomous.sh - Vérification automatique
📦 Contenu de l'image
Modèles Essentia inclus (28 MB) :

/app/models/
├── discogs-effnet-bs64-1.pb (18 MB)
├── genre_discogs400-discogs-effnet-1.pb (2 MB)
├── genre_discogs400-discogs-effnet-1.json (15 KB)
├── mtg_jamendo_instrument-discogs-effnet-1.pb (2.6 MB)
└── mtg_jamendo_moodtheme-discogs-effnet-1.pb (2.7 MB)
🚀 Déploiement Autonome
Sur N'IMPORTE QUEL serveur avec Docker :

# 1. Cloner
git clone <repo>
cd Audio-Classifier

# 2. Configurer (optionnel)
echo "AUDIO_LIBRARY_PATH=/path/to/music" > .env

# 3. Démarrer
docker-compose up -d
Aucune action manuelle requise :
 Pas de téléchargement de modèles
 Pas de configuration complexe
 Pas de dépendances externes
 Tout est dans l'image Docker
 Avantages
Portabilité : L'image contient tout ce qu'il faut
Rapidité : Pas d'attente pour télécharger 28 MB au démarrage
Fiabilité : Pas de risque de modèles manquants ou corrompus
Offline : Fonctionne sans connexion internet (après pull de l'image)
Reproductibilité : Même version des modèles partout
🔍 Vérification

# Vérifier que tout est autonome
bash check-autonomous.sh

# Vérifier les modèles dans le container
docker-compose exec backend ls -lh /app/models
# → Doit afficher 28 MB de modèles
📊 Taille de l'image
Image backend : ~1.2 GB (avec modèles)
Image frontend : ~500 MB
Total : ~1.7 GB
C'est normal pour une image Python + TensorFlow + Essentia + modèles. Le système est maintenant 100% autonome et prêt pour un déploiement sans intervention !
This commit is contained in:
2025-12-23 10:34:32 +01:00
parent c91cf634b7
commit 1bb13c79d0
6 changed files with 446 additions and 34 deletions

View File

@@ -35,48 +35,43 @@ Outil de classification audio automatique capable d'indexer et analyser des bibl
- PostgreSQL 16 avec extension pgvector
- FFmpeg (pour librosa)
## 🚀 Démarrage Rapide
## 🚀 Démarrage Rapide - 100% Autonome !
### 1. Cloner et configurer
### Installation en 3 commandes
```bash
# 1. Cloner le projet
git clone <repo>
cd audio-classifier
cp .env.example .env
```
### 2. Configurer l'environnement
# 2. Configurer le chemin audio (optionnel)
echo "AUDIO_LIBRARY_PATH=/chemin/vers/votre/musique" > .env
Éditer `.env` et définir le chemin vers votre bibliothèque audio :
```env
AUDIO_LIBRARY_PATH=/chemin/vers/vos/fichiers/audio
```
### 3. Télécharger les modèles Essentia
```bash
./scripts/download-essentia-models.sh
```
### 4. Lancer avec Docker (Production)
```bash
# 3. Démarrer !
docker-compose up -d
```
L'API sera disponible sur `http://localhost:8001`
La documentation interactive : `http://localhost:8001/docs`
Le frontend sera accessible sur `http://localhost:3000`
**C'est tout !** 🎉
### 5. Lancer avec Docker (Développement)
- Frontend : http://localhost:3000
- API : http://localhost:8001
- API Docs : http://localhost:8001/docs
```bash
docker-compose -f docker-compose.dev.yml up -d
```
### Premier scan
L'API sera disponible sur `http://localhost:8001`
Le frontend sera accessible sur `http://localhost:3000`
1. Ouvrir http://localhost:3000
2. Cliquer sur **"Rescan"** dans le header
3. Attendre la fin du scan
4. Profiter de votre bibliothèque musicale indexée !
### ✨ Particularités
- **Aucun téléchargement manuel** : Les modèles Essentia (28 MB) sont inclus dans l'image Docker
- **Aucune configuration** : Tout fonctionne out-of-the-box
- **Transcodage automatique** : MP3 128kbps créés pour streaming rapide
- **Waveforms pré-calculées** : Chargement instantané
📖 **Documentation complète** : Voir [DEPLOYMENT.md](DEPLOYMENT.md)
## 📖 Utilisation